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Executive Summary 
The deliverable D4.2 within Work Package 2 (WP2) describes state-of-the-art (SOTA) in the field of pest 

and disease detection and prediction using digital technologies. It focuses on recent advancements 

and existing and novel methods that are relevant to the goals of the STELLA project. 

STELLA Pest Surveillance System (PSS) is envisioned as a holistic digital system that will aid in the early 

warning and detection of regulated pests together with a response strategy by using modern sensing 

technology and Artificial Intelligence (AI). It will consist of three subsystems: 1) an early warning system 

using novel pest forecasting models and Internet of Things (IoT) sensors, 2) a pest detection system 

using remotely piloted aerial systems (RPAS), remote and proximal sensing as well as citizen science 

and traps, and 3) a pest response system providing geolocated hotspots for initiating containment and 

counteractive measures.  

Section 1 highlights the challenges in food production related to crop damages caused by harmful 

diseases, quarantine and regulated non-quarantine pests (RNQPs), and the importance of early, 

automated pest monitoring systems. It also explains the importance of advanced technologies, 

including AI, machine learning, and remote sensing in improving pest detection and prediction to 

mitigate crop losses and environmental impacts. 

Section 2 describes the role of T2.2 within WP2 in collecting, processing, and utilizing multi-source 

data. 

Section 3 is the main part of this deliverable and consists of a literature review of recent studies, trends 

and technologies in pest and disease monitoring, detection and prediction. Based on comprehensive 

literature review, application of various digital technologies, data and machine learning techniques 

were identified and described. In addition, knowledge gaps, recent trends and potential future 

developments were identified. 

This document has aim to reference and describe the key points of the relevant studies, that might be 

applied and optimized for the STELLA project. It also focuses on the limitations of current systems and 

research gaps, that STELLA aims to address.  
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1. Introduction 
Pests and diseases pose significant threats to agriculture and forestry, leading to substantial 

productivity losses and economic damage. Increase in population, climate change, intensified 

international trade are all trends that are increasing challenges in crop production and leading to 

severe crop damages caused by harmful diseases. To address the increasing food demands and risks 

in food production, it is critical to optimize the use of resources such as water and soil to enable high 

yield crops, and to decrease damages caused by pests. 

One of the most harmful pests are quarantine and regulated non-quarantine pests (RNQPs), which are 

causing significant damages to crops. For instance, the Potato leafroll virus can lead to up to 50% yield 

losses (Garcia-Ruiz et al., 2021), while Grapevine Leafroll Disease can result in economic losses of 

around $40,000 per hectare1. Minimizing and managing RNQP outbreaks and preventing the 

introduction of quarantine pests are crucial step in protection of crop production. Despite the 

importance of pest detection and prediction, there is a significant lack of comprehensive monitoring 

and surveillance systems, particularly for quarantine pests and RNQPs. 

Accurate knowledge of the location, extent, and severity of pest and disease occurrences is vital for 

guiding plant protection measures effectively (Zhang et al., 2019). In addition, early detection and 

monitoring are crucial factors for preventing disease spread, enabling effective management practices, 

and reducing both qualitative and quantitative crop yield losses. 

Traditional methods of pest detection, such as visual inspections by experts, are both costly and time-

consuming. These methods often only detect symptoms when they are visible, potentially delaying 

intervention. Molecular detection techniques have provided a more advanced approach, but the need 

for automated methods for crop monitoring and forecasting has become increasingly apparent. 

Systems that can perform automated and early pest detection on a large-scale tasks can play an 

important role in avoiding the excessive use of pesticides and chemicals, reducing both the damage 

caused to the environment and the production costs associated with the use of pesticides and 

chemicals (Kartikeyan & Shrivastava 2021).  

The digitalization of agriculture, coupled with advancements in artificial intelligence, has 

revolutionized pest detection and prediction. Smart farming technologies now integrate remote 

sensing, image analysis, spectroscopy, Internet of Things, and multi-source data to support event 

forecasting, disease detection, and the efficient management of water and soil resources (Popescu et 

al. 2023). Pest detection and prediction technologies are significant in modern agriculture, offering 

vital tools for early identification and management of pest outbreaks. Early detection and monitoring 

are critical factors for preventing disease spread, undertaking effective management practices, and 

reducing both qualitative and quantitative crop yield losses. 

Infrared, audio, and image-based sensors are used to identify pests, along with recent advances such 

as machine learning (Lima et al., 2020). Machine learning (ML) algorithms have enhanced the precision 

of pest detection (Mittal et al. 2024) through reliance on modern, technology-driven approaches. ML 

methods such as Support Vector Machines (SVM), Decision Trees, Random Forest (RF), k-Nearest 

Neighbors (KNN), and Naïve Bayes require substantial expertise and often struggle with complex 

backgrounds and varying lighting conditions (Guo et al., 2024). In contrast, deep learning algorithms, 

particularly Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Transformer 

networks, have emerged as more efficient and accurate solutions (Guo et al., 2024). These algorithms 

                                                           
1 https://portal.ct.gov/-
/media/caes/documents/publications/fact_sheets/plant_pathology_and_ecology/2019/leafroll_disease.pdf 

https://link.springer.com/article/10.1007/s12145-024-01276-9#ref-CR10
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can automatically learn complex feature representations from large datasets, improving their ability 

to generalize across diverse conditions and handle high-dimensional data. Neural networks enable 

machines to recognize patterns in data, representing a new trend in agriculture that enhances the 

detection and management of pests (Popescu et al. 2023). 

A system capable of performing tasks of automated pest detection in the early phase of the 

development helps in the reduction of the use and risk of chemical pesticides and hazardous pesticides 

as part of the EC Farm to Fork and Biodiversity Strategies, targeting: 1) a 50% reduction in the use and 

risks of chemical pesticides and 2) a 50% reduction in the use of more hazardous pesticides. In addition, 

digital technologies enable farmers to identify pest species correctly and before disease cause 

significant damage which is important in reducing pesticide use, environmental damage, and 

production costs.  

The integration of advanced technologies into pest detection and prediction offers a promising 

pathway to improving agricultural productivity while minimizing environmental impacts. By leveraging 

AI, machine learning, field sensors, traps, proximal and remote sensing, the agricultural sector can 

develop more precise, efficient, and sustainable pest management strategies, ultimately enhancing 

food security and reducing economic losses. 

 

2. WP2 overview 
The main task of T2.2 within WP2 is to collect, extract and pre-process all the proximal, IoT, trap (insect 

and spore) and remote sensing data that will feed T2.5 and WP3. Data collected in T2.2 will be used as 

inputs for training the pest detection models for the selected STELLA diseases. Developed AI models 

will be incorporated into STELLA PSS platform and evaluated in UCPs (Figure 1).  

 

 

Figure 1 Interconnections between data collection and other project components. 

 

For better understanding of current technologies for pest detection and prediction, this report aims to 

describe the current state-of-the-art (SOTA) in early warning systems and pest detection models, and 

to identify knowledge gaps. In addition, some of the described methods might be utilized in the context 

of STELLA project to improve the automation and efficiency of the STELLA pest detection and 

prediction tools. 
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3. Literature Review on Pest Detection 
To identify recent advances and SOTA on digital tools used for pest detection and prediction with the 

focus on quarantine diseases, a literature review of pest detection and prediction tools was done. An 

overview of the latest research is presented by its comprehensive review of the literature. The focus 

of this review was on the use of digital technologies, data and machine learning techniques to identify 

studies and digital tools that are relevant for the goals of the STELLA project. 

An extensive literature search was conducted using keywords: “pest OR disease detection”, “pest OR 

disease prediction”, “remote sensing”, “machine learning”, “deep learning”, “IoT”. 

The literature associated with the keywords was identified in the following database and sources: 

Google Scholar, Science Direct and Scopus. Publications available from 2020 to 2024 were used for 

analysis, with certain additional relevant studies published before 2020. 

In addition, Google’s search engine and AI search engines (Perplexity AI and Scopus AI) were used to 

collect information on the recent progress of the pest monitoring systems, and to identify platforms 

and apps used in pest monitoring in agriculture.  

In total, 124 manuscripts were reviewed from peer-reviewed journals in English language. Reviewed 

manuscripts were used to describe the current trends in pest and disease detection and prediction in 

agriculture, to identify challenges and knowledge gaps, to categorize detection and prediction models 

per technology used, and to describe application of various ML techniques applied in recent studies.  

Pest detection approaches 
Several novel and non-invasive methods have been developed in the last decade which can be 

classified according to data used, such as: 

• Image-based methods (Fuentes et al., 2017) 

• Sensor-based methods (Navrozidis et al., 2023, Junges et al., 2020) 

• Internet of things (IoT) (Passias et al., 2023) 

• Hybrid data approaches (Dong et al., 2020)  

The following table summarizes various pest detection methods, their descriptions, and references to 

relevant studies (Table 1). It also includes traditional and manual techniques.  
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Table 1 Overview of pest detection methods, their descriptions, and key references 

Detection 
methods 

Description References 

Visual 
inspection 

Traditional method involving manual examination of crops by farmers or 
professionals. 

Zhu et al., 2020 
Hussain and 
Srikaanth (2024) 
 

Molecular tests 
DNA-based methods like PCR for identifying pest species from soil or 
plant samples. 

Herbert et al., 
2008 
 

Proximal 
sensing and 
Image 
recognition  
 

Employs deep learning algorithms (i.e., CNN, YOLO) and computer vision 
for identifying pests in images. 

Chen et al., 2021 
 

Remote 
sensing 

Utilizes UAVs, satellites, and hyperspectral imaging to detect pest 
infestations over large areas. 

Zheng et al., 2023 
 

IoT 
Integrates sensors and IoT devices for real-time monitoring and data 
collection on pest presence. 

Chen et al., 2020 
Passias et al., 
2023 
 

Hybrid 
approach 

Integrates multiple data sources and leveraging various machine learning 
techniques 

Yang et al., 2021 
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Image-Based Pest Recognition and Detection 
 

Table 2 Summary of recently developed image-based pest recognition and detection methods 

Method Crop Pest/Disease Reference 

Faster Region-based 
Convolutional Neural 
Network (Faster R-CNN), 
Region-based Fully 
Convolutional Network (R-
FCN), and Single Shot 
Multibox Detector (SSD) 
 

Tomato 9 tomato diseases Fuentes et al., 2017 

Faster R-CNN network 
 

Tulip 
 

Tulip Breaking Virus (TBV) 
 

Polder et al., 2018 
 

CNN using the GoogLeNet 
architecture 
 

14 plant species 
 

79 diseases (leaf damages) 
 

Barbedo, 2019 
 

Yolo V3 Tomato Multiple tomato diseases 
Liu and Wang, 2020 
 

aster R-CNN 
Dataset collected in field 
environment 

Grasshopper identification 
Yi et al., 2021 
 

YOLO v4 Multiple crops 
Mealybugs, Coccidae, and 
Diaspididae 

Chen et al., 2021 
 

Optimized Yolov3 
ResNet50 
 

Multiple crops 
 

102 insect pests (IP102 
dataset) 
 

Prasath and Akila, 2023 
 

Multi-scale Dense YOLO 
(MD-YOLO) 
 

Apple orchards 
 

Three lepidopteran pests 
 

Tian et al., 2023 
 

Faster-PestNet CNN 
 

Multiple crops 
 

IP102 dataset 
 

Ali et al., 2023 
 

YOLOv5 - involving the 
SWin Transformer, ResSPP, 
and C3TR 
 

Various plants and pests 
 

Dataset with 1309 images 
 

Dai et al., 2023 
 

Bayesian multi-task 
learning (using a ResNet18 
backbone) 
 

Corn, rape, rice, wheat 
 

Aphids 
 

Amrani et al., 2024 
 

YOLO v8 Tomato Tuta absoluta Christakakis et al., 2024 

 

Image-based pest recognition and detection involves using computer vision and ML techniques to 

identify and classify pests from images. Some of the recent studies that utilized images for 

identification of pests and diseases are presented in Table 2. Images used for ML techniques are 

collected by digital cameras or scanners. High-resolution cameras, including both RGB (Red, Green, 

Blue) and multispectral cameras, are commonly employed to capture detailed images of crops. These 

cameras can be mounted on various platforms such as drones, satellites, and ground-based vehicles, 

allowing for flexible and comprehensive monitoring of agricultural fields (Domingues et al., 2022). For 

more detailed and close-range imaging, ground-based systems are employed. These systems can 

employ handheld cameras and smartphones (Fuentes et al., 2017, Christakakis et al., 2024), mounted 

cameras on agricultural machinery or specialized robotic platforms (Cubero et al. 2020), stationary 

camera systems installed in fields for continuous monitoring (Preti et al. 2020, Tian et al., 2023). In 

addition, unmanned aerial vehicles (UAV) are used to offer the advantage of capturing images from 

different angles and heights, providing a more complete view of the crop conditions (Du et al., 2022). 

Moreover, advanced sensors such as hyperspectral sensors and thermal cameras are used to gather 
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more specific data that can reveal information not visible to the naked eye, such as plant stress or early 

signs of pest infestation (Zhao et al., 2022, Singh et al., 2022, Bhakta et al., 2022). 

Smartphones and cloud platforms have emerged as powerful tools for enabling farmers to detect pests 

in their crops more efficiently and effectively. This technology-driven approach combines the 

accessibility of mobile devices with the processing power and storage capabilities of cloud computing 

to create pest detection systems (Chen et al., 2021, Christakakis et al., 2024). 

Machine learning methods 
The field of image-based pest detection relies on various machine learning and computer vision 

techniques to process and analyse the collected images. Image-based methods utilize computer vision 

techniques, primarily using Convolutional Neural Networks (CNNs) (Popescu et al., 2023) and object 

detection models for pest and disease detection (Yi et al., 2021). These methods involve capturing 

images at various scales (leaf, canopy, field) and analysing them for signs of pests or damage. 

CNNs are mainly and successfully used for the development of classification, object detection, or 

segmentation tasks in image analysis in pest detection as they are particularly well-suited to image 

recognition tasks (Chen et al., 2021, Popescu et al., 2023). The capability of neural networks to learn 

and recognize patterns in data have been utilized to detect insects and pests in crops. The CNN model 

typically consists of two main operators, which are the convolutional layer and the pooling layer. The 

convolutional layer can automatically extract more complex and significant features of the image. Due 

to the high computation of the convolutional network, the pooling layer reduces the number of 

parameters of the data. A large number the current research investigates the topic of pest image 

classification based on CNN models (Popescu et al., 2023, Mittal et al., 2024). 

Advanced object detection architectures like Faster Region-Based CNN (Faster R-CNN) (Du et al., 2022), 

Single Shot Multibox Detecto (SSD) (Fuentes et al., 2017), and You Only Look Once (YOLO) (Dai et al., 

2023) have significantly improved pest and disease identification and detection in crops. 

Faster R-CNN is an object detection model with a two-stage learning method. In the first stage, it 

involves finding the region proposal and then it performs classification and bounding-box regression 

based on the region proposal in the second stage. Chen et al. (2021) used Faster R-CNN to detect pests 

by smartphone-based application and image recognition. Faster R-CNN F1 score accuracy in detecting 

mealybugs was 85%, 91% for Coccidae, and 83% for Diaspididae. The inference time of the model was 

0.69 s per image. This study demonstrates the potential of combining deep learning object detection 

methods with mobile technology, aligning with a growing trend of developing smartphone applications 

that utilize deep learning models for on-site pest detection (eLocust3m2, Plantix3, Khan and Parihar, 

2022). 

Based on Faster R-CNN, Du et al. (2022) proposed Pest R-CNN for early detection and monitoring the 

occurrence of maize Spodoptera frugiperda, by using ortho-images acquired by an UAV flighting at a 

height of 1.5 m. It showed a better accuracy in comparison to R-CNN and YOLOv5 model showing its 

potential in utilizing low-cost remote sensing methods and applying them in actual agricultural pest 

detection. Authors proposed increasing the transferability by training the model on more images of 

leaves infested by different type of pests and in different geography zones. In addition, multi-source 

data approach (multi-spectral and hyper-spectral images) was proposed to further explore the 

combination of different remote sensing data by using this model. 

                                                           
2 https://play.google.com/store/apps/details?id=plantvillage.locustsurvey 
3 https://plantix.net/en/ 
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Another improvement of Faster R-CNN was proposed by Ali et al. (2023) by developing Faster-PestNet. 

It uses MobileNet as its base network and is tuned on the pest samples to recognize the crop pests of 

various categories. IP102 dataset (Wu et al., 2019) was utilized for model tuning and testing, which 

contains more than 75,000 in-field collected photos from 102 categories. Accuracy of 82.43% was 

achieved on the test set that contained several image distortions and images with complex 

background. In addition to pest recognition, it was proposed to evaluate the same technique for 

recognizing the crop diseases caused by pests. 

With the development of object detection, YOLO series (Redmon et al., 2016) has been the industry-

level standard for efficient object detection. It has also been widely used in the modern agricultural 

sector for real-time pest detection and monitoring (Popescu et al., 2023). YOLO uses a grid of cells to 

divide the image into multiple bounding boxes and predicts the object class and location for each cell. 

Dai et al. (2023) introduced improved YOLOv5m for pest detection improving robustness for 

recognizing plant pests and achieving better accuracy in comparison to previous versions. The latest 

YOLO versions that were employed for pest detection kept improving performances (enhancing 

precision and increasing detection speed) are YOLOv8 (Ye et al., 2024) and YOLOv9 (He et al., 2024). 

The main advantages of YOLO in pest detection are its significant enhancement of detection accuracy 

and speed.  For instance, the PestLite-YOLO model based on YOLOv5 improved the mean Average 

Precision (mAP) and provided real-time monitoring capabilities (Gao, 2024). Similarly, the SP-YOLO 

model based on YOLOv8n achieved higher precision and recall rates for soybean pest detection 

compared to traditional methods (Qin et al., 2024). Traditional machine learning methods require 

extensive preprocessing and feature extraction, which are time-consuming and less accurate 

compared to the end-to-end structure of YOLO models (Li et al., 2024b). 

Datasets 
The quality and diversity of training data significantly impacts the performance and generalizability of 

pest detection systems. There are several publicly available datasets and ongoing projects that provide 

data for pest detection and recognition in agriculture. For instance, datasets such as IP102 and 

PlantVillage have been extensively used to train models for detecting various pests across different 

crop types. IP102 is a large-scale pest dataset (Wu et al., 2019) containing 75,000 images from 102 pest 

categories. PlantVillage is another open access dataset (Hughes and Salathé, 2015) that includes 

images of healthy and diseased plant leaves, which can be useful for identifying pest damage 

symptoms. PlantDoc dataset includes 2,598 images taken in real-world settings across 13 plant species 

and 27 classes of diseases, contributing to improved accuracy of detection models (Singh et al., 2020). 

For specific crop types or regions, custom datasets can often be built using a combination of field 

surveys, ground sensors, and collected images. Custom datasets allow for more precise and context-

specific pest detection, as they can include images captured under local environmental conditions and 

feature pests that are prevalent in specific areas. 

In the review of pest detection and recognition algorithms in agriculture by (Guo et al., 2024), authors 

confirmed the success of object-based deep learning algorithms for pest detection. It was stated that 

future work should focus on developing multimodal pest datasets, applying transfer learning, and 

designing hybrid architectures to address challenges such as background noise in complex agricultural 

environments and the diversity in pest appearance. 

Limitation 
While image-based pest detection algorithms demonstrated significant promise in pest detection, they 

face several challenges: 
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Imbalanced Class Distribution: Many detection systems struggle with extremely imbalanced class 

distributions, where some pest species are underrepresented in training datasets, leading to poor 

detection accuracy for those species (Lv et al., 2022). In addition, high visual similarity between 

different pest species can lead to misclassification, reducing the overall accuracy of detection systems 

(Liu et al., 2022, Ali et al., 2023). 

Dataset size: Several authors highlighted the limitation related to small number of samples in public 

datasets for training the models for agricultural pest recognition (Barbedo, 2018, Barbedo, 2019, Zhao 

et al., 2022, Liu et al., 2022). Augmentation techniques were commonly used to artificially increase the 

number of samples for training (Barbedo, 2019, Patel and Bhat, 2021, Ye et al., 2022). Some widely 

used techniques in deep learning are: rotating images, flipping images, adding noise, cropping or 

zooming into specific parts of images. For instance, Barbedo (2019) proposed a method for increasing 

size and diversity of plant disease image datasets, where images of leaves were segmented into 

individual lesions and spots, which increased the sample size.  

Complex Backgrounds: Field environments often have complex backgrounds, which can confuse 

detection models and lead to false positives or missed detections (Guo et al., 2024).  

Small Pest Size: Detecting small pests is particularly challenging due to their tiny size and the need for 

high-resolution images to capture sufficient detail.  (Liu and Wang, 2021, Khalid et al., 2023) 

Real-Time Application: Many current systems are constrained to laboratory settings or controlled 

environments and struggle with real-time, in-field applications due to computational and logistical 

limitation (Liu and Chahl, 2018).  

Trends and outlook 
Recent trends in image-based pest detection systems emphasize advancements in machine learning, 

sensor technologies, and data fusion to improve pest identification and monitoring. Various models 

demonstrate high accuracy and speed, making them suitable for real-time field applications. 

Additionally, the integration of mobile and cloud-based platforms has made pest detection systems 

more accessible to farmers, allowing on-site identification through smartphone applications. Emerging 

methodologies incorporate multi-modal data fusion, combining image data with environmental factors 

like soil moisture and climate conditions, to provide a comprehensive understanding of pest dynamics. 

While these technologies offer significant promise, challenges such as imbalanced datasets, complex 

field backgrounds, and the detection of small pests remain active areas of research, with future efforts 

focusing on hybrid models, improved datasets, and transfer learning to address these limitations. 

The future of pest detection in agriculture relies on the development of high-quality image datasets 

and reliable detection models (Zhang et al., 2023). For example, hybrid models combining multiple 

algorithms can improve classification accuracy and efficiency (Divya and Santhi, 2023). Additionally, 

multi-modal data fusion, which integrates image data with other sensor inputs like infrared or audio, 

has the potential to further enhance detection capabilities (Lima et al., 2020, Dai et al., 2023). For 

example, Tian et al. (2023) plans to leverage the information on pest occurrence, as well as climate 

and soil moisture data, to establish a correlation between these factors and the presence of insect 

pests. 

Developing automated systems for pest detection can reduce labour costs and increase accuracy. 

These systems can leverage machine vision and image processing techniques to selectively target pests 

and help in minimizing pesticide use (Kumar et al., 2017, Preti et al. 2020,). 
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Remote sensing methods in Pest and Disease Recognition and Detection 
Remote sensing technology in pest management refers to the use of data collected at a distance from 

the plants, using satellites or drones, to detect changes in crop health that may indicate pest 

infestations. Remote sensing is able to detect plant damages and disease symptoms such as 

morphological changes outside the plant and physiological changes inside the plant (Zheng et al., 

2023), providing noncontact and spatially continuous monitoring of diseases and pests efficiently. 

These symptoms are often reflected in the plant’s spectral reflectance (Hall et al., 2016). Remote 

sensing tools can be used in diseases detection and monitoring in case a disease induce spectral 

response that can be detected by a specific sensor or sensors system (Zhang et al., 2019). This 

technology leverages the measurement of electromagnetic radiation reflected from crops to identify 

stress indicators caused by pests. 

Therefore, based on the monitoring scale, remote sensing can be applied at leaf, canopy, field, and 

regional scale. Remote sensing systems are classified into groups that include: visible & near-infrared 

spectral sensors (VIS-NIR); fluorescence and thermal sensors; synthetic aperture radar (SAR) and light 

detection and ranging (Lidar) systems (Zhang et al., 2019). According to Zhang et al. (2019), types of 

plants’ changes and symptoms caused by diseases or pests can be classified in the following categories: 

reduction of biomass, presence of lesions or pustules, destruction of pigment systems, wilting. 

Table 3 Overview of recently developed remote sensing based methods and technologies used for pest and disease detection 
in crops across different platforms and sensors 

Method Platform/Sensor Crop Pest/Disease Reference 

Correlation analysis 
UAV (hyperspectral 
and thermal) 

Olives Verticillium wilt Calderón et al., 2013 

Multilayer 
perceptron, CNN, RF, 
SVR 
 

UAV (multispectral) 
 

Potato 
 

Phytophthora infestans 
 

Duarte-Carvajalino et 
al., 2018 
 

SVM and RF 
 

ZY-3 satellite 
 

Wheat 
 

Wheat rust 
 

Chen et al., 2018 
 

Optimal threshold 
method 
 

Sentinel-2 
 

Wheat 
 

Wheat Yellow Rust 
 

Zheng et al., 2018 
 

Various ML models 
 

Ground-based 
hyperspectral sensor 
 

Vineyards 
 

Grapevine Leafroll-Associated 
Virus 1 and 3 
 

Bendel et al., 2020 
 

RF 
 

PlanetScope satellite 
 

Soybean 
 

Sudden death syndrome 
 

Raza et al., 2020 
 

Image-based pest 
recognition 
 

UAV and IoT 
 

Rice 
 

Multiple pests 
 

Bhoi et al., 2021 
 

Back-propagation NN 
and SVM 
 

Multisource UAV 
 

Arecanut 
 

Yellow leaf disease 
 

Lei et al., 2021 
 

UNet++ 
 

Sentinel-2 
 

Forest 
 

Bark beetle and aspen leaf 
miner 
 

Zhang et al., 2022 
 

RF and XGBoost 
 

UAV 
 

Olives 
 

Verticillium dahlia and other 
olive diseases 
 
 

Navrozidis et al., 2023 

Karhunen-Loeve 
Expansion (KLE) 
 

UAV 
 

Sugar Belle 
mandarin and 
avocado 
 

Citrus canker and Laurel wilt 
disease 
 

Hariharan et al., 2023 
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PLSR and linear 
regression 

Hyperspectral 
satellite imagery 
(PRISMA) 

Maize Helicoverpa armigera 
Sári-Barnácz et al., 
2024 

Recent advancements in pest detection leverage ML and remote sensing technologies to enhance 

efficiency and accuracy (Table 3).  UAVs, satellites, and ground-based systems are commonly used for 

data collection. UAVs are particularly effective due to their high spatial resolution and flexibility (Jia et 

al., 2016, Ye et al., 2022, Ma et al., 2022, Yuan et al., 2023, Kouadio et al., 2023, Yu and Li, 

2024). Techniques such as hyperspectral imaging and thermal imaging help in identifying specific pest-

related stress by analysing the spectral signatures and thermal patterns of crops. For instance, thermal 

imaging can differentiate between healthy and infested plants based on temperature variations 

(Calderón et al., 2013). Spectral and hyperspectral imaging techniques can be used for detecting 

physiological changes in plants caused by pests, by identifying specific wavelengths and spectral indices 

that correlate with pest presence (Jones et al., 2010, Prabhakar et al., 2022, Deng et al., 2023).  

High-resolution satellite imagery enables a monitoring of large agricultural regions. While these images 

may lack the precision for detailed pest and disease monitoring, they facilitate the quick detection of 

affected areas and the assessment of their spread (Zheng et al., 2018, Zheng et al., 2023). 

Overall, integration of remote sensing and machine learning promotes resource conservation by 

enabling precise application of pesticides and fertilizers, reducing waste and environmental impact 

(Lobo et al., 2024, Wang et al., 2024a). 

Machine learning methods 
ML advancements have been utilized in pest detection models and in smart farming in general. ML 

models have been used to analyse data on diseases and relationship between the data (images, 

meteorological data, spectral reflectance) and disease occurrence and intensity (Zheng et al., 2021, Lei 

et al., 2021).  

Various ML models, including Convolutional Neural Networks (CNNs), Support Vector Machines 

(SVMs), and Random Forests (RF), were employed for pest detection (Honkavaara et al., 2020, Du et 

al., 2022, Navrozidis et al., 2023). In addition, some more advanced models like multi-scale attention-

UNet (MA-UNet) (Ye et al., 2022) and CNN-GAIL (Yu and Li, 2024) have shown superior performance in 

specific applications.  

SVM algorithm was employed to predict the occurrence and severity of the yellow leaf disease of 

arecanut (Lei et al., 2021). This study used the UAV multisource remote sensing data and achieved 

classification accuracy of 86.30%, which was slightly higher than other classification algorithms (naïve 

Bayes, k-NN, decision tree). SVM algorithm demonstrated superior performance in another study 

(Calou et al., 2020) with 99.28% overall accuracy. In this study, high-resolution aerial images combined 

with machine learning algorithms have been utilized to monitor yellow sigatoka in banana crops. SVM 

was also applied to monitor wheat yellow rust based on Sentinel-2 multispectral images (Zheng et al., 

2021). This model used two-stage vegetation indices (using images from two different days) and 

meteorological data achieving the classification accuracy of 84.2%. 

RF is another traditional machine learning-based method used for pest detection as a binary 

classification model. Detection of incidence of the coffee berry necrosis was tested using Landsat 8 

satellite imagery with RF classifier (Miranda et al., 2020). The authors suggested that integration with 

other remote sensing technologies would be beneficial for more precise detection as current overall 

accuracy of the detection was less than 0.6. 

ML algorithms, RF and XGBoost, were used to classify olive trees as healthy or infected based on their 

spectral signatures obtained by UAV (Navrozidis et al., 2023). Use of these algorithms was evaluated 
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and optimized by identification of the most important spectral features by Recursive Feature 

Elimination and Mutual Information techniques. The algorithms achieved high classification 

performance, with RF and XGB reaching roc-auc scores of 0.977 and 0.955, respectively. Both classifiers 

were trained with the initial dataset of 1507 features (11 statistics for 137 bands). 

KNN algorithm is used for classification by finding the K nearest matches in training data followed by 

using the label of closest matches to predict. Traditionally, distance such as euclidean is used to find 

the closest match (Kartikeyan & Shrivastava 2021). KNN classifiers was employed using UAV-based 

multispectral imaging to detect Cercospora leaf spot in sugar beets, showing the highest accuracy 

compared to other classifiers (Tugrul et al., 2024). 

Deep learning methods have emerged as particularly powerful tools with the ability to handle large, 

complex datasets. In addition, deep learning approaches have advantage of automatic feature 

extraction and have superior performance on image-based tasks. Several recent studies have 

successfully applied deep learning methods, particularly CNN models, in the detection of plant diseases 

and insects. 

Du et al. (2022) proposed an end-to-end object-based deep learning model, Pest R-CNN, for detecting 

and localizing Spodoptera frugiperda infestations in maize using high-resolution UAV RGB images, 

achieving improved accuracy over Faster R-CNN and YOLOv5, and offering a promising approach for 

precision pest monitoring. 

Zhang et al. (2022) combined the UNet++ architecture with an attention mechanism to detect bark 

beetle and aspen leaf miner infestations in British Columbia forests, achieving an accuracy of 85.11%, 

outperforming previous segmentation models. This deep learning-based method utilized Sentinel-2 

multispectral data, vegetation indices, and RGB imagery for forest-pest damage segmentation, while 

the ResNeSt101 backbone and the scSE attention mechanism in the decoding phase improve 

segmentation results.  

Data 
Sentinel-2 offer 13 spectral bands of 10 to 60 m spatial resolution, and with two satellites cover the 

entire Earth every five days (Vuolo et al., 2016), providing data that can be utilized in pest detection. 

Sentinel-2 bands was also utilized by Zheng et al. (2018) by creating a new index, the Red Edge Disease 

Stress Index (REDSI), for detecting yellow rust disease of winter wheat. The optimal threshold method 

was used to assess REDSI’s ability for mapping yellow rust infection resulting in the overall accuracy of 

84.1% and 85.2% at the canopy and regional scale, respectively. The study concludes that Sentinel-2 

MSI and the REDSI index can support effective disease detection. 

Hyperspectral sensors, consisting of numerous narrow spectral bands, have the potential to detect 

diseases by capturing subtle changes in the spectral profile of plants that may be caused by pests and 

diseases. Potential of hyperspectral satellite imagery (PRISMA) was assessed in Sári-Barnácz et al. 

(2024) for monitoring maize ear damage caused by cotton bollworm larvae in Hungary, and compared 

to Sentinel-2, PRISMA performed better in grain maize and Sentinel-2 in sweet maize pest monitoring. 

Ground-based hyperspectral imaging (400–2500 nm) was also tested to detect grapevine leafroll 

disease (GLD) caused by GLRaV-1 and GLRaV-3 in white and red grapevine cultivars (Bendel et al., 

2020). Detection models successfully identified symptomatic, asymptomatic, and healthy plants in 

both greenhouse and field conditions. 

High spatial resolution satellite data provide potential of more precise identification of individual 

infested plants and mapping of affected areas. For instance, high spatial resolution ZY-3 satellite 

imagery was utilized to map wheat rust disease (Chen et al., 2018). By applying wrapper feature 
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selection combined with SVM and RF classification methods, this study achieved high classification 

accuracy (90.80% to 95.10%). 

Raza et al. (2020) investigated the use of another high-resolution (3m) PlanetScope satellite imagery 

combined with the random RF algorithm to detect sudden death syndrome (SDS) in soybean fields in 

Iowa, USA. The results showed that this approach can detect SDS-infected areas with over 75% 

accuracy, even before visible symptoms appear. 

Lidar is an active sensor that can be integrated with other remote sensing data and used in prediction 

of disease and parasite outbreaks (Farhan et al., 2024). Franceschini et al. (2024) explored the use of 

LiDAR-derived point clouds and hyperspectral imagery to detect Blackleg disease in potatoes. 

Structural features from LiDAR were combined with vegetation indices derived from hyperspectral 

data, which increased the classification accuracy up to 18% compared to using vegetation indices as a 

single data source. 

In addition, the potential of thermal imaging in the early detection of plant diseases and pests were 

confirmed by some studies (Singh et al., 2022, Hernanda et al., 2024). For example, severity of stripe 

rust disease in wheat was estimated using thermal images by Singh et al. (2022), showing similar or 

better estimates in comparison to visible images. Thermal imaging was used in combination with 

airborne hyperspectral images to distinguish between Verticillium dahliae and Xylella fastidiosa 

infections in olive trees (Poblete et al., 2021). Key spectral traits, such as the blue index, structural 

parameter, and carotenoid pigment content, were effective in differentiating Verticillium dahliae 

infections, while traits like the normalized PRI index, blue index, fluorescence curvature reflectance-

based index, and chlorophyll index were crucial for identifying Xylella fastidiosa infections. 

Multi-source reflectance data can improve the pest detection performance of models by providing 

diverse and complementary information (Li et al., 2024a, Yang et al., 2021). Multi-source data imagery 

(thermal, multispectral, and hyperspectral) was used to detect early-stage water stress caused by 

Verticillium wilt in olive trees (Calderón et al., 2013). Thermal indices like canopy temperature minus 

air temperature, Crop Water Stress Index, and physiological indices like chlorophyll fluorescence, 

blue/green/red ratios, and the Photochemical Reflectance Index were effective in identifying 

Verticillium wilt infection and assessing disease severity in olive orchards. Another study (Lei et al., 

2021) used multispectral data and UAV high-resolution imagery to calculate five vegetation indices, 

including NDVI and OSAVI, and applied machine learning algorithms like back-propagation neural 

networks (BPNN) and SVM to quantify disease severity based on the yellowing area of areca crowns. 

Authors proposed integration of hyperspectral sensors with 3D laser radar and employing deep 

learning algorithms. 

Spectroscopy 
Spectroscopy is being used in agriculture for pest detection due to its ability to help identify plant stress 

caused by pests by analysing specific spectral signatures before visible symptoms appear (Mishra et 

al., 2024). Spectroscopy provides rapid, non-destructive methods to monitor and manage crop health 

(Crépon et al., 2023). It was used for early detection of infestation (Mishra et al., 2024), for monitoring 

and identification of pests (Hoseny et al., 2023), quality control (Johnson 2020), non-destructive 

analysis to identify wavelengths sensitive to specific diseases (Hoseny et al., 2023, Sawyer et al., 2023, 

Khan et al., 2021). 

Sawyer et al. (2023) used RF based on hyperspectral images to identify Grapevine leafroll-associated 

viruses and grapevine red blotch viruses in a laboratory. Hyperspectral data within the visible range 

(from 510nm to 710nm) collected on leaf images (non-infected, infected by red blotch, infected by 

leafroll or co-infected by both) was utilized to train the RF model. When binarily classifying infected vs. 
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non-infected leaves, the RF model reached an overall maximum accuracy 82.8%, outperforming visual 

assessment of symptoms by experts when using RGB segmented images. 

Zhang et al. (2020) also employed RF to test the detection of Fusarium head blight through the analysis 

of reflectance spectral data of healthy and diseased wheat ears by using 16 spectral indices. The 

severity of the disease (ratio of the diseased area) was predicted with R2 value exceeding 0.90.   

Another study (Hoseny et al., 2023), demonstrated the effectiveness of spectroradiometry and thermal 

imaging for non-invasive detection of spiny bollworm infestations in cotton bolls, identifying the Blue 

band and Normalized Pigment Chlorophyll Index (NPCI) as key indicators of pest presence. This study 

highlighted the importance of reducing pesticides through early detection of diseases.  

Trends 
Recent trends in remote sensing for pest and disease detection in crops have shown a clear progression 

towards increased spatial and spectral resolution, along with significant advancements in DL models. 

Traditionally, remote sensing studies have focused on detecting spectral variations caused by pest 

infestations or disease infections (Zhang et al., 2019). As those variations are often detectable only in 

specific and narrow wavelengths, shift toward multispectral and hyperspectral imaging is enabling 

more precise detection.  

Satellites often cannot capture disease progression as precisely as hyperspectral sensors, and their 

spatial resolution is not high enough to detect small patterns in crops. UAV, on the other hand, can 

deliver highly detailed images, but their spatial range is limited and labour intensive, while frequent 

temporal observations are not always possible. This results often with a delayed detection response. 

To address the limitations of both, data fusion between satellite and UAV data have been used (Ye et 

al., 2022, Li et al., 2024a), which led to the improvements of the detection methods. 

Thermal imaging is also gaining attention for its ability to capture early disease indicators. Another 

important trend is movement towards combination of multiple data sources. For example, the 

integration of multispectral, hyperspectral, and thermal sensors showed great promise for early-stage 

detection, though results often depend on the disease species (Calderón et al., 2013).  

The integration of multi-source data, including meteorological data (Zheng et al., 2021), is becoming 

more common to predict favourable conditions for pest outbreaks and contribute to early detection.   

While traditional machine learning methods like SVM and RF have yielded promising results, deep 

learning models, such as multi-scale attention UNet and CNNs, are beginning to outperform these 

approaches. Nonetheless, the manual annotation and preparation of training datasets is challenging, 

and lack of sufficient survey data is significant limitation for training the DL models. 

Spectroscopy has emerged as a powerful tool, helping to identify key wavelength regions and develop 

predictive models for disease severity (Sawyer et al., 2023, Mishra et al., 2024). For instance, research 

on leaf scale using spectroscopy measurements were performed to develop detection and prediction 

models based on absorbance spectra, and some authors proposed further research to be applied on a 

large scale (canopy or field scale) (Dhau et al., 2017, Khan et al., 2021, Sawyer et al., 2023). However, 

not often these models have been upscaled. 

Current studies largely focus on binary classification (healthy vs. infected plants), but advancements in 

disease severity quantification—such as pixel-level regression—are now exploring more granular data. 

Method of detection largely depend on pest species and regulations. In many cases, binary 

classification is sufficient because if a disease is detected, environmental regulations prescribe plants 

removal and there is no need to assess the disease severity (Picard et al., 2018).  
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Limitations 
Detecting specific pests or diseases often requires identifying specific wavelengths, which varies by 

species and growth stage. This creates a need for more extensive research and validation, as one index 

or model cannot be generalized across different pests. A potential solution involves building simpler 

hyperspectral cameras that focus on the most informative wavelengths for detecting crop stress 

(Navrozidis et al., 2023). Transferability of models is also a challenge, as what works for one crop type 

or region may not apply universally (Bendel et al., 2020). 

A key limitation is that many models and spectral signatures cannot reliably differentiate between 

diseases with similar spectral characteristics. This poses challenges for practical applications where 

multiple diseases share overlapping symptom profiles. Additionally, spectral characteristics can vary 

across different growth stages of the same disease, further complicating detection (Zhang et al., 2020). 

Models often require validation for each specific disease and growth stage to ensure accurate severity 

estimation. Timely detection of diseases is very challenging, because when remote sensing-based 

approaches identify a disease, it is usually too late to prevent the damages in the crops (Yang 2020). 

Leveraging time series of satellite images, as in Zheng et al. (2021), gives an opportunity to capture 

disease progression patterns (Yang et al., 2018, Yu et al., 2022). Already mentioned data fusion of 

multiple data sources, such as UAV, satellites, ground-based sensors, and field observations, could be 

utilized by advanced DL models (Zhang et al., 2022) that can learn subtle spectral and spatial patterns 

of infestation. In addition, environmental conditions (soil humidity, soil nutrients, light intensity, 

meteoritical data) and historical disease patterns, give more contextual information to improve the 

accuracy of predictive models (Marković et al., 2021, Domingues et al., 2022). 

For certain diseases, low spatial resolution remains to be the problem. Problem with mixed pixels 

(impact of shade, bare soil, other vegetation) often result in misclassification (Ma et al., 2019). To 

improve vegetation masking and excluding the impact of bare soil, some authors suggest obtaining 

surface elevation model with UAV or lidar to delineate rows of plants, or individual canopies (Weiss 

and Baret, 2017). Creation of 3D point clouds by LiDAR were utilized in agricultural and forestry 

applications in various studies (Wu et al., 2016, Xu et al., 2020, Lines et al., 2022). To address the mixed 

pixel issue, Fu et al. (2022) used derivative of ratio spectra (DRS) to help remove the interference of 

background elements in satellite multispectral image pixels, enhancing pest-related spectral features 

for Cotton aphid infestation monitoring. Another approach for unmixing in vineyards was proposed by 

De Petris et al. (2024), where Sentinel-2 NDVI data were integrated with high-resolution UAV-derived 

grapevine fraction cover maps. The UAV data enabled accurate separation of spectral contributions 

from grapevine rows and inter-rows. 

Images collected at a 90° ortho-angle often do not give an opportunity to identify diseases occurring 

on lower layers of leaves or from the plant’s sides. To overcome this issue, Du et al. (2022) proposed 

capturing images from multiple angles in order to capture and infestation. Nie et al. (2024) successfully 

addressed this problem in detection of cotton Verticillium Wilt by UAV capturing images from multiple 

angles, in addition to satellite observations.   

Future 
While challenges remain, ongoing advancements in satellite technology, machine learning, and 

integrated pest management approaches continue to improve the ability to detect and differentiate 

crop diseases using remote sensing. Researchers propose higher-resolution sensors with more spectral 

bands, multi-date image capture, and improved multi-source data integration (Kouadio et al., 2023), 

including meteorological information, to enhance the early detection and prediction for pest outbreaks 

(Berger et al., 2022). 
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Transfer learning was proposed to address the issue of lack of datasets for training the models, which 

leverages pre-trained models applies them to new, but related tasks (Li et al., 2023). This is particularly 

important given the scarcity of large, annotated datasets in this domain. Additionally, self-supervised 

learning offers potential for future improvements, particularly for early monitoring and severity 

estimation. 

Moreover, testing models on unknown areas and datasets is critical to ensure their robustness and 

applicability across diverse conditions (Bendel et al., 2020). Many models are trained on specific 

datasets and regions, but without validation in new contexts, their performance may degrade when 

applied to different crops, climates, or pest pressures. 

IoT applications for real-time monitoring and data collection on pest presence 
The Internet of Things (IoT) refers to a network of interconnected devices that can collect, share, and 

store information. In agriculture, IoT devices and weather stations are equipped with a variety of 

sensors for monitoring environmental conditions (soil humidity, soil nutrients, light intensity, 

meteoritical data), and pest activity (Sharma et al., 2020). It also offers farmers tools for early 

identification and targeted control of pests, which helps to improve pesticide spraying and fertilisation. 

IoT has the potential to significantly optimize agricultural yields and reduce resource consumption 

through the use of wireless sensors, UAVs, and cloud computing (Rehman et al., 2021). Despite initial 

costs, the long-term benefits of IoT, such as better plant monitoring, automated irrigation, weed 

control, and pest management, typically outweigh the expenses (Ndjuluwa et al., 2023). To explore 

the impact and applications of IoT in pest detection, several studies have demonstrated its 

effectiveness across various agricultural settings (Table 4). 

Table 4 Overview of recent IoT based methods for pest and disease detection in agriculture 

Method Tools Crop Pest/Disease Reference 

YOLOv8 
Smartphones, cloud 
computing and DSS 

Tomato Tuta absoluta 
Christakakis et al., 2024 
 

Optimized Yolov3 
ResNet50 

IoT sensors for 
capturing images 

Multiple crops 
102 insect 
pests (IP102 
dataset) 

Prasath and Akila, 2023 
 

Multi-scale Dense YOLO 
Insect traps, optical 
sensor 

Orchards Lepidoptera Tian et al., 2023 

SVM (IoT for activating 
spraying of pesticides) 
 

Camera and NodeMCU 
 

Multiple crops 
 

Multiple 
diseases 
 

Krishna et al., 2019 
 

R-CNN and YOLOv5 
Traps, cameras and 
mobile apps 

Multiple crops Whitefly pests Cardoso et al., 2022 

UNet and Deep batch 
normalized AlexNet 
 

Web cameras and base 
station 
 

14 species 
 

38 diseases 
 

Mishra et al., 2024 
 

DMF-ResNet Acoustic sensors - 
32 types of 
insects 

Dhanaraj et al., 2023 

 

Cardoso et al. (2022) presented an IoT network combined with computer vision techniques, using low-

cost cameras and deep neural models like R-CNN and YOLO to autonomously detect and monitor 

Whitefly pests in traps, providing farmers with real-time data through a mobile app for more efficient, 

precise, and cost-effective pest management.  

Another study that utilized captured plant leaf images by IoT nodes (Mishra et al., 2020), developed 

the sine cosine algorithm-based rider neural network (SCA-based RideNN) disease classification, which 

optimizes neural network weights for improved accuracy. In this study, algorithm detects a disease but 
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not a specific type. In the later study (Mishra et al., 2024), PlantVillage dataset was utilized to train the 

models to identify first plant type, and disease type afterwards.  

Krishna et al. (2019) employed SVM classification algorithm to detect various plant diseases utilizing a 

leaf image database. Upon disease identification, IoT system automatically triggers pesticide spraying 

using NodeMCU and sends an SMS alert to the farmer through a cloud platform. 

IoT can also record insect noises (Dhanaraj et al., 2023) by deploying acoustic sensors connected to IoT 

networks, enabling autonomous pest detection by deep neural models. 

Trends: 
The integration of IoT in agriculture has been expanding recently and increasingly used to monitor 

environmental conditions and pest activity remotely, providing farmers with continuous, real-time 

data. It helps to reduce human intervention through automation and enables farmers to constantly 

monitor their farms. 

IoT systems has evolved from monitoring tools to detection systems utilizing ML and DL models. They 

use web cameras to take images of plants which are then preprocessed and analysed by ML algorithms 

for pest and disease identification. In addition, IoT collects various environmental data (i.e., soil 

moisture, vegetation cover, precipitation, temperature) which are important for agriculture and are 

used as features in pest modelling. 

Advancements in cloud computing performances and its incorporation into IoT solutions, allowed large 

data processing and storage, which supports real-time analytics for better decision-making. In 

addition, costs in IoT sector have been decreasing, making the technology more accessible. This trend 

contributed to the development of the pest management systems and utilization of mobile 

applications, enabling real-time pest and disease detection and data-driven decision-making. 

Limitations: 
While IoT brings several advantages to pest detection, certain limitation exists. Setting up IoT systems 

requires specialized infrastructure and expertise, making it difficult for smaller farms to adopt. Even 

though long-term benefits often outweigh initial costs, high expenses can be an obstacle for small-

scale farmers. The absence of uniform standards across IoT platforms and devices can lead to 

compatibility issues, hindering the integration of different systems (Kiobia et al., 2023).  

In addition, accuracy of the models may be lower due to low-quality images or insufficient training 

datasets, especially across early pest developmental stages. This can result in false positives/negatives 

classification. Some current systems are only capable of detecting whether a plant is affected by a 

disease but not the specific type, limiting their practical applications.  

Accuracy problems can be addressed by large and annotated datasets collected throughout different 

development stages and under real conditions. Combination of computer vision with other data 

sources, such as acoustic or thermal sensors, have proved to improve detection accuracy (Poblete et 

al., 2021, Dhanaraj et al., 2023). 

Future 
Integration of IoT pest monitoring systems with precision spraying or robotic pest removal mechanisms 

would have a potential for real-time, automated pest control (Wang et al., 2024b). Also, 

interconnected pest monitoring networks could help predict and manage pest outbreaks on a larger 

scale by analysing global data. 

With the constant improvement of AI and DL, future systems may enhance disease classification using 

more sophisticated neural networks trained on large datasets. The creation of extensive image 
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datasets under real-world conditions will enhance the accuracy of pest detection systems and improve 

models' robustness across different environmental scenarios. 

Multi Data Approaches 
Using data from multiple sources for pest detection in agriculture involves integrating various types of 

information offering several advantages over traditional single-source methods. Combining diverse 

data types such as imagery, remote sensing, climatic conditions, and soil attributes can significantly 

improve the accuracy of pest detection models (Li et al., 2023, Huang et al., 2022, Zheng et al., 2021). 

Qi et al. (2024) developed a monthly habitat suitability monitoring model for fall armyworm in Africa 

using multi-source earth observation data, including climate, land use, vegetation (NDVI), and soil 

variables. By integrating exploratory factor analysis and the RF algorithm, the model achieved high 

performance metrics (AUC > 0.9) 

Gao et al. (2020a) integrated IoT and UAVs for monitoring crop diseases and pests, combining weather 

data from IoT sensor nodes with spectral image analysis from UAVs. The framework demonstrated 

how temperature and rainfall influence wheat disease occurrence, enhancing agricultural monitoring 

and decision-making. 

Zhang et al. (2018) presented a vegetable pest early warning system based on multi-dimensional big 

data by using a multi-sensor network to collect data on pests, soil, environment, eco-climate, weather, 

and the images of pests, and applying machine learning algorithms such as Back Propagation Neural 

Network. This multi-sensor network system showed that actual environmental data contribute to the 

accuracy of the pest prediction model. 

Huang et al. (2022) proposed combining mobile internet survey data and high-resolution spatial-

temporal meteorological information to address the limitations in pest forecasting models of 

Alternaria leaf spot disease in apple caused by insufficient availability of the disease in the affected 

region. Temperature and humidity during key periods were identified as sensitive inputs for the model.  

Bhoi et al. (2021) proposed an IoT assisted UAV based pest detection model to identify the pests in the 

rice during its production in the field. AI was employed to send images captured by UAV to the Imagga 

cloud4, where pest identification is carried out and the user is informed. 

Approach by Zheng et al. (2021) showed potential for regional-scale disease monitoring by model 

combining Sentinel-2 multispectral vegetation indices with meteorological data in wheat yellow rust 

monitoring. 

Transfer learning using multi-source data has shown promising results for pest detection (Li et al., 

2023, Devi et al., 2023, Guo et al., 2024). This approach is particularly useful in agriculture, where 

collecting labelled data for pest detection across diverse environments can be challenging. By using 

models pre-trained on large, generic datasets, transfer learning allows to fine-tune models on specific 

agricultural pest data, incorporating multi-source inputs for more accurate detection (Li et al., 2023). 

Pest Detection Platforms 
Pest detection platforms have become increasingly sophisticated and essential in modern agriculture, 

and with the technological improvements they support pest control practices (Theodorou et al., 2023). 

In addition, mobile applications make pest management more accessible, particularly for small-scale 

farmers who may not have access to advanced technologies. To address a limited pool computing 

                                                           
4 https://imagga.com/ 
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capabilities of smartphones, implementation of a cloud platform with a web interface and smartphone 

app is often employed (Chen et al., 2021) to perform the pest detection in real time.  

Several platforms and mobile applications are available for pest detection and management in 

agriculture, many of which use AI, remote sensing, and data integration to help farmers monitor and 

control pest outbreaks (Table 5). 

Table 5 Overview of commercial platforms and digital systems for pest and disease monitoring in agriculture 

System 
Technology 
used 

Data inputs Plant type Reference/link 

VELOS 
IoT, UAV, 
UGV 

Weather 
patterns, soil 
conditions, 
and pest 
populations 

bean 
cultivations 

https://users.uowm.gr/louta/ 
CONFERENCES/C71.pdf 

Plantix Phone app 

Image based 
recognition 
and 
treatment 

30 crops, 
120 plant 
diseases 

https://plantix.net/en/ 
 

Agrio 
 

Phone app 
 

Forecast and 
detection 
 

 
https://agrio.app/ 
 

CropDiagnosis 
app 
 

Phone app 
– user 
inputs 
 

Questionnaire 
for symptoms 
 

 
 
 

https://www.cropdiagnosis.com/portal/crops/en/home 
 

Croptimus 
platform 
 

Scouting 
system, 
cameras 

Image based 
recognition 

 https://www.fermata.tech/#technology 

iFarmer 
 

  
Sugarcane 
 

https://ifarmer.asia/ 
 

 

Systems like VELOS utilize remote sensing and sensor technologies to collect high-quality data, which 

is then used to monitor crop development, detect pests, and assess pest management strategies. It 

analyses data on weather patterns, soil conditions, and pest populations to help in making informed 

decisions on pesticide application and other pest control measures (Theodorou et al., 2023). 

Plantix5 is an android-based farming assistant tool that provides crop health information, helping with 

identification of plant diseases using computer vision and deep learning techniques. Its database 

contains half a million pictures covering 30 crops worldwide and offers remedies for over 120 crop 

diseases. Users can take a photo of an affected plant and receive an automated diagnosis of the 

problem (Samai et al., 2023).  

Agrio6 is another mobile application that uses AI to identify plant diseases, pests, and nutrient 

deficiencies and provides treatment recommendations using on image-based disease recognition. It 

also gives warning notification about the potential of spread of diseases based on satellite images and 

weather models (Khan and Parihar, 2022).  

A smartphone application eLocust3M7  for real-time tracking and reporting of locust swarms is using 

data collected by crowdsourcing activities. Tabar et al. (2021) integrated this data with additional 

                                                           
5 https://plantix.net/en/ 
6 https://agrio.app/ 
7 https://www.fao.org/locust-watch/activities/innovation/digital-tools/en 

https://users.uowm.gr/louta/
https://plantix.net/en/
https://agrio.app/
https://www.cropdiagnosis.com/portal/crops/en/home
https://ifarmer.asia/
https://plantix.net/en/
https://agrio.app/
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remote-sensed environmental data (i.e., soil moisture, vegetation cover, precipitation) using neural 

network architecture to provide accurate predictions of locust movement in East Africa. 

 

Early Detection and Prediction 
Importance of early detection of plant pathogens is crucial for minimizing the risk of disease spreading, 

crop damage and economic losses by enabling timely interventions. Early detection refers to the 

identification of pests or diseases at their initial stages, often before they reach damaging levels. This 

approach focuses on recognizing signs of infestation or disease early enough to implement 

management strategies that can effectively mitigate their impact. 

Pest prediction involves forecasting future pest populations and potential outbreaks based on current 

data and historical trends. It uses models that integrate various factors, such as environmental 

conditions, pest life cycles, and past infestation records, to estimate the likelihood of pest issues arising 

(Marković et al., 2021, Domingues et al., 2022).  

Early detection allows for timely management practices, reducing the spread and impact of diseases 

and pests on crops, which is essential for maintaining crop health and productivity (Martinelli et al., 

2015, Buja et al., 2021, Zhang et al., 2024). By identifying issues early, farmers can apply targeted 

treatments, reducing the unnecessary use of pesticides (Soares et al., 2022). This not only lowers costs 

but also minimizes environmental pollution (Martinelli et al., 2015, Hoseny et al., 2023). In addition, 

early warning systems reduce the labour and expertise required for disease monitoring, making it a 

cost-effective solution for large-scale farming operations (Long, 2023). 

There were several studies and products that explored possibility of early detection of diseases. 

Arapostathi et al. (2024) employed UAV-based multispectral remote sensing to detect early symptoms 

of peach flatheaded root borer infestation in orchards, using vegetation indices and tree crown area 

data. The XGBoost model proved to be the most effective, achieving an accuracy of 0.85, with marginal 

variations from the other tested ML models, utilizing UAV-derived multispectral data where NDVI was 

the most critical predictor of infestation. 

Ye et al. (2022) proposed a UAV-based multi-scale attention-UNet model to address the limitations of 

traditional multi-phase satellite-based methods for detecting pine wilt disease. This model improved 

pest detection using monophasic aerial imagery and data augmentation techniques, allowing for 

earlier and more accurate prediction of pest infestations. 

Marković et al. (2021) proposed a ML model to predict daily pest occurrences, focusing on Helicoverpa 

armigera, by analysing air temperature and relative humidity. Extending the prediction window to five 

days improved accuracy from 76.5% to 86.3%, reducing false detections. This validated the 

effectiveness of using longer periods for better pest occurrence prediction. 

David et al. (2023) also highlighted the critical role of weather data in predicting crop disease and pest 

outbreaks. In their study, weather conditions, such as temperature, humidity, and rainfall, proved to 

be key accelerators for the spread of diseases and pests. 

Artificial inoculation is method sometimes used in research to provide data for training machine 

learning models for early detection (Chivasa et al., 2021, Duan et al., 2024). Soares et al., 2022 

inoculated coffee seedlings with Hemileia vastatrix, causing coffee leaf rust, to train SVM and ANN 

models on labelled dataset. Multispectral images were collected using UAV in different intervals after 

the inoculation to analyse spectral curves of healthy and infected plants, and detection accuracy was 

80% at an asymptomatic stage (15 days after inoculation). 

https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1158933/full#B50
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1158933/full#B50
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1158933/full#B50
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Trends, limitation, future 
The importance of early detection lies in identifying pests and diseases before they reach destructive 

levels, enabling timely interventions. Early detection has been becoming increasingly important in 

reducing crop damage, economic losses and environmental harm, because simply detecting a disease 

in later phase might be too late for protecting a crop. Recent trends in this area involve the integration 

of various technologies and approaches to enhance the accuracy and effectiveness of detection and 

prediction systems. 

To timely detect or predict the development of a disease, many studies are moving towards the 

integration of multiple data sources. Collecting various parameters that affect the appearance of pests 

are used as an integral part of early detection models. However, models are trained only for specific 

pest and input features depend on the studied pests (Marković et al., 2021). It leads to lack of flexibility 

of models and inability to employ them onto different pest species. 

Exploration of various models have been common to utilize the increasing availability of data sources 

(metrological data, UAV, satellite, traps, field sensors).  Future ML models will likely incorporate 

transfer learning and ensemble approaches, enabling them to generalize better across different crops 

and pests. 

IoT devices and sensors are also being used to provide real-time data on environmental conditions and 

pest activity, further enhancing early detection systems. Utilization and availability of mobile apps by 

farmers leads to development of mobile platform and systems that help in obtaining real-time data 

useful for decisions such as targeted treatments and pesticide use (Domingues et al., 2022, Arapostathi 

et al., 2024). 

One of the most significant trends is the use of UAVs equipped with multispectral or hyperspectral 

sensors. These UAVs capture high-resolution images of crops, allowing early detection of subtle 

symptoms that may not be visible to the naked eye (Ye et al., 2022). 

As in the models that aim to detect the presence of pests or occurrence of diseases, early detection 

models largely depend on data reliability and their complexity and dependency on specific datasets, 

which limits their generalizability. Furthermore, the expertise required to manage and interpret the 

data from these systems, and knowledge about the early development of specific pests, remains a 

barrier to wider adoption. 

As costs are decreasing and technology advances, it is expected to build up on existing DL models. 

Moreover, with the increase of pest monitoring networks on larger scales, a broader understanding of 

pest movement and outbreaks could be achieved. 
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Discussion and Conclusion 
Based on the 8 selected pests present in all 6 UCP region (6 RNQP, 2 Quarantine), STELLA aims to 

develop models to detect these pests using data obtained by available technologies (IoT, remote and 

proximal sensing), and to contribute to early warning systems in preventing spread of diseases caused 

by selected pests. Table 6 summarizes recent studies that have explored and developed methods for 

detecting pests and diseases aligned with STELLA's objectives. These studies employ technologies and 

analytical methods for diverse crops, offering valuable insights for advancing pest detection systems. 

While some studies directly address pests and diseases relevant to the STELLA project, others focus on 

similar challenges or pathogens to provide additional insights into applicable methods and 

technologies. 

Table 6 Overview of recent studies utilizing various technologies and methods for detecting pests and diseases in crops 
relevant to the STELLA project.  

Crop Pest/Diseases Technology Method Reference 

Olives 

Verticillium wilt 
UAV 
(hyperspectral 
and thermal) 

Correlation analysis 
Calderón et al., 2013 
 

Verticillium 
dahliae and Xylella 
fastidiosa 
 

UAV 
(hyperspectral 
and thermal) 
 

RF 
 

Poblete et al., 2021 
 

Verticillium dahlia UAV RF and XGBoost Navrozidis et al., 2023 

Tomato 

Ralstonia 
solanacearum 
 

RGB images 
 

CNN 
 

Vásconez et al., 2024 
 

Ralstonia 
solanacearum 
 

Spectrometry 
 

PCA and SVM 
 

Cen et al., 2022 
 

9 tomato disease Image-based 

Faster R-CNN, 
Region-based Fully 
CNN (R-FCN), and 
Single Shot Multibox 
Detector (SSD) 

Fuentes et al., 2017 

Multiple tomato 
diseases 

Image-based Yolo V3 
Liu and Wang, 2020 
 

Tuta absoluta Image-based YOLO v8 Christakakis et al., 2024 

Vineyard 

GLRaV–3 
 

Spectrometry 
 

PLSR, SMLR to 
analyse key 
wavelengths; 
Quadratic 
Discriminant Analysis 
(QDA) and Naïve 
Bayes (NB) 
classification 
 

Sinha et al., 2019 
 

GLRaV–3 
Ground-based 
hyperspectral 
sensor 

Various ML models Bendel et al., 2020 

GLRaV–3 Spectrometry 

ANOVA and linear 
regression for 
sensitivity analysis; 
LS-SVM classifier 

Gao et al., 2020b 

GLRaV–3 and 
grapevine red 
blotch virus 
(GRBV) 
 

Spectrometry 
 

CNN and RF 
 

Sawyer et al., 2023 
 

GLRaV–3 
 

UAV 
 

GLDCNet 
 

Liu et al., 2024 
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Grapevine yellows 
WorldView-2 
satellites 

SVM Zibrat and Knapic, 2024 

Potato 

Vascular wilt - 
Verticillium spp 
 

UAV 
 

RF 
 

León-Rueda et al., 2021 
 

Alternaria solani - 
early blight 
 

UAV 
 

U-Net 
 

Vijver et al., 2022 
 

Apple 
Apple fire blight - 
Erwinia amylovora 

UAV RF and SVM Xiao et al., 2022 

 

This review on the latest developments in the application of digital tools for pest detection and 

prediction showed significant progress in recent years and growing utilization of ML and DL techniques 

in agriculture monitoring. By combining diverse data types, researchers can develop more 

comprehensive models that account for various factors influencing pest dynamics. 

A lot of studies focused on image-based methods. CNNs and object detection models like Faster R-

CNN, YOLO, and SSD have demonstrated high accuracy in identifying pests from images. In recent 

years, UAV-based imagery has become valuable for disease monitoring at field and farm scales, driven 

by decreasing costs of equipment, the need for effective solutions for managing plan diseases, and 

advancements in processing capabilities. Satellite data is increasingly being used for large-scale and 

continuous pest monitoring. However, its spatial resolution is not always sufficient for early 

recognition of small-scale changes in crop health. 

The development of mobile applications and cloud platforms has made pest detection systems more 

accessible to farmers, enabling on-site identification and real-time monitoring through smartphones. 

IoT systems has also evolved, and devices and weather stations equipped with a variety of sensors for 

monitoring environmental conditions offer tools for early pest detection. By integrating IoT technology 

with cloud computing, mobile applications are widely used to assist farmers in monitoring pests 

(Ndjuluwa et al., 2023). 

Authors frequently suggested multi-source data approach to address limitations of individual data 

sources. Notably, there is an evident trend of combining data from various sources, such as imagery, 

remote sensing, climatic conditions, and soil attributes. Factors such as advanced DL techniques, large-

scale datasets, improved computational power and affordability of sensors, contribute to the increase 

of research on multi-source data integration for pest detection. By utilizing various data, a more holistic 

view of pest dynamics is possible, as well as capturing diverse factors influencing pest outbreaks (i.e., 

microclimatic variations, soil conditions, vegetation structure). Different data sources can complement 

each other in terms of temporal and spatial resolution. For instance, satellites provide frequent but 

coarse observations, while UAVs offer high-resolution imagery over smaller areas. 

Practical applications are becoming widely used due to development of platforms and mobile 

applications that are available for pest detection in agriculture. However, there is still a need for more 

complex and extensive datasets that would enable efficient training of models capable of addressing 

various challenges, such as background noise, complex environments, transferability across regions, 

and visual similarities between different pest species. The availability of open-source, freely accessible 

data on pest outbreaks through online repositories obtained by ongoing projects and collaborations, 

would significantly contribute to the accuracy and generalizability of pest detecting systems and their 

practical applications in real-world agricultural settings. 
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Based on multiple studies in the field of pest monitoring, authors generally agree on the effectiveness 

of ML and DL techniques in improving pest detection accuracy. There is also consensus on the benefits 

of integrating remote sensing and IoT technologies for real-time monitoring and data collection, and 

importance of multi-source data fusion. 

Need for larger and more balanced datasets, that are open-source and can be used to train models for 

identifying multiple diseases, was highlighted in many studies and literature reviews. However, while 

some authors use or suggest transfer learning and data augmentation techniques to address this issue 

(Barbedo, 2019, Patel and Bhat, 2021, Ye et al., 2022, Li et al., 2023), others advocate more extensive 

data collection (Wu et al., 2019, Zhang et al., 2023). 

Future directions in the field of disease management in agriculture are expected to emphasize the 

development of more advanced DL algorithms, high-quality datasets (Zhang et al., 2023), additional 

expansion of hybrid models (Divya and Santhi, 2023), development of methods for real-time data 

analysis and decision-making tools (Domingues et al., 2022, Arapostathi et al., 2024), efforts to reduce 

labour costs and integrating AI and IoT (Sharma et al., 2024). 

In conclusion, the integration of digital tools, machine learning, and remote sensing technologies has 

significantly advanced the field of pest detection and prediction in agriculture. Proximal and image-

based methods, remote sensing, and IoT integration have proven to be effective in providing accurate 

disease detection and pest identification, which is essential for effective pest management. The use of 

multi-source data and emerging trends such as transfer learning and hybrid models offer promising 

tools for further improving pest detection systems. However, challenges such as imbalanced datasets, 

complex field backgrounds, and the need for high-resolution images remain. Future research should 

focus on addressing these challenges and developing more robust models. The practical applications 

of these technologies, including mobile apps and platforms for farmers, highlight their potential to 

revolutionize pest management practices and improve agricultural productivity. 
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