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Executive Summary
The deliverable D4.2 within Work Package 2 (WP2) describes state-of-the-art (SOTA) in the field of pest

and disease detection and prediction using digital technologies. It focuses on recent advancements

and existing and novel methods that are relevant to the goals of the STELLA project.

STELLA Pest Surveillance System (PSS) is envisioned as a holistic digital system that will aid in the early
warning and detection of regulated pests together with a response strategy by using modern sensing
technology and Artificial Intelligence (Al). It will consist of three subsystems: 1) an early warning system
using novel pest forecasting models and Internet of Things (loT) sensors, 2) a pest detection system
using remotely piloted aerial systems (RPAS), remote and proximal sensing as well as citizen science
and traps, and 3) a pest response system providing geolocated hotspots for initiating containment and

counteractive measures.

Section 1 highlights the challenges in food production related to crop damages caused by harmful
diseases, quarantine and regulated non-quarantine pests (RNQPs), and the importance of early,
automated pest monitoring systems. It also explains the importance of advanced technologies,
including Al, machine learning, and remote sensing in improving pest detection and prediction to

mitigate crop losses and environmental impacts.

Section 2 describes the role of T2.2 within WP2 in collecting, processing, and utilizing multi-source

data.

Section 3 is the main part of this deliverable and consists of a literature review of recent studies, trends
and technologies in pest and disease monitoring, detection and prediction. Based on comprehensive
literature review, application of various digital technologies, data and machine learning techniques
were identified and described. In addition, knowledge gaps, recent trends and potential future

developments were identified.

This document has aim to reference and describe the key points of the relevant studies, that might be
applied and optimized for the STELLA project. It also focuses on the limitations of current systems and

research gaps, that STELLA aims to address.
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1. Introduction

Pests and diseases pose significant threats to agriculture and forestry, leading to substantial
productivity losses and economic damage. Increase in population, climate change, intensified
international trade are all trends that are increasing challenges in crop production and leading to
severe crop damages caused by harmful diseases. To address the increasing food demands and risks
in food production, it is critical to optimize the use of resources such as water and soil to enable high
yield crops, and to decrease damages caused by pests.

One of the most harmful pests are quarantine and regulated non-quarantine pests (RNQPs), which are
causing significant damages to crops. For instance, the Potato leafroll virus can lead to up to 50% yield
losses (Garcia-Ruiz et al., 2021), while Grapevine Leafroll Disease can result in economic losses of
around $40,000 per hectarel. Minimizing and managing RNQP outbreaks and preventing the
introduction of quarantine pests are crucial step in protection of crop production. Despite the
importance of pest detection and prediction, there is a significant lack of comprehensive monitoring
and surveillance systems, particularly for quarantine pests and RNQPs.

Accurate knowledge of the location, extent, and severity of pest and disease occurrences is vital for
guiding plant protection measures effectively (Zhang et al., 2019). In addition, early detection and
monitoring are crucial factors for preventing disease spread, enabling effective management practices,
and reducing both qualitative and quantitative crop yield losses.

Traditional methods of pest detection, such as visual inspections by experts, are both costly and time-
consuming. These methods often only detect symptoms when they are visible, potentially delaying
intervention. Molecular detection techniques have provided a more advanced approach, but the need
for automated methods for crop monitoring and forecasting has become increasingly apparent.
Systems that can perform automated and early pest detection on a large-scale tasks can play an
important role in avoiding the excessive use of pesticides and chemicals, reducing both the damage
caused to the environment and the production costs associated with the use of pesticides and
chemicals (Kartikeyan & Shrivastava 2021).

The digitalization of agriculture, coupled with advancements in artificial intelligence, has
revolutionized pest detection and prediction. Smart farming technologies now integrate remote
sensing, image analysis, spectroscopy, Internet of Things, and multi-source data to support event
forecasting, disease detection, and the efficient management of water and soil resources (Popescu et
al. 2023). Pest detection and prediction technologies are significant in modern agriculture, offering
vital tools for early identification and management of pest outbreaks. Early detection and monitoring
are critical factors for preventing disease spread, undertaking effective management practices, and
reducing both qualitative and quantitative crop yield losses.

Infrared, audio, and image-based sensors are used to identify pests, along with recent advances such
as machine learning (Lima et al., 2020). Machine learning (ML) algorithms have enhanced the precision
of pest detection (Mittal et al. 2024) through reliance on modern, technology-driven approaches. ML
methods such as Support Vector Machines (SVM), Decision Trees, Random Forest (RF), k-Nearest
Neighbors (KNN), and Naive Bayes require substantial expertise and often struggle with complex
backgrounds and varying lighting conditions (Guo et al., 2024). In contrast, deep learning algorithms,
particularly Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Transformer
networks, have emerged as more efficient and accurate solutions (Guo et al., 2024). These algorithms

L https://portal.ct.gov/-
/media/caes/documents/publications/fact_sheets/plant_pathology_and_ecology/2019/leafroll_disease.pdf
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can automatically learn complex feature representations from large datasets, improving their ability
to generalize across diverse conditions and handle high-dimensional data. Neural networks enable
machines to recognize patterns in data, representing a new trend in agriculture that enhances the
detection and management of pests (Popescu et al. 2023).

A system capable of performing tasks of automated pest detection in the early phase of the
development helps in the reduction of the use and risk of chemical pesticides and hazardous pesticides
as part of the EC Farm to Fork and Biodiversity Strategies, targeting: 1) a 50% reduction in the use and
risks of chemical pesticides and 2) a 50% reduction in the use of more hazardous pesticides. In addition,
digital technologies enable farmers to identify pest species correctly and before disease cause
significant damage which is important in reducing pesticide use, environmental damage, and
production costs.

The integration of advanced technologies into pest detection and prediction offers a promising
pathway to improving agricultural productivity while minimizing environmental impacts. By leveraging
Al, machine learning, field sensors, traps, proximal and remote sensing, the agricultural sector can
develop more precise, efficient, and sustainable pest management strategies, ultimately enhancing
food security and reducing economic losses.

2. WP2 overview
The main task of T2.2 within WP2 is to collect, extract and pre-process all the proximal, loT, trap (insect
and spore) and remote sensing data that will feed T2.5 and WP3. Data collected in T2.2 will be used as
inputs for training the pest detection models for the selected STELLA diseases. Developed Al models
will be incorporated into STELLA PSS platform and evaluated in UCPs (Figure 1).

£

Trained Al
models

Data collection STELLA PSS

Proximal

Earth
observation

Use Case Pilots

&

Figure 1 Interconnections between data collection and other project components.

For better understanding of current technologies for pest detection and prediction, this report aims to
describe the current state-of-the-art (SOTA) in early warning systems and pest detection models, and
to identify knowledge gaps. In addition, some of the described methods might be utilized in the context
of STELLA project to improve the automation and efficiency of the STELLA pest detection and
prediction tools.
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3. Literature Review on Pest Detection

To identify recent advances and SOTA on digital tools used for pest detection and prediction with the
focus on quarantine diseases, a literature review of pest detection and prediction tools was done. An
overview of the latest research is presented by its comprehensive review of the literature. The focus
of this review was on the use of digital technologies, data and machine learning techniques to identify
studies and digital tools that are relevant for the goals of the STELLA project.

An extensive literature search was conducted using keywords: “pest OR disease detection”, “pest OR

n u n u ”n u

disease prediction”, “remote sensing”, “machine learning”, “deep learning”, “loT”.

The literature associated with the keywords was identified in the following database and sources:
Google Scholar, Science Direct and Scopus. Publications available from 2020 to 2024 were used for
analysis, with certain additional relevant studies published before 2020.

In addition, Google’s search engine and Al search engines (Perplexity Al and Scopus Al) were used to
collect information on the recent progress of the pest monitoring systems, and to identify platforms
and apps used in pest monitoring in agriculture.

In total, 124 manuscripts were reviewed from peer-reviewed journals in English language. Reviewed
manuscripts were used to describe the current trends in pest and disease detection and prediction in
agriculture, to identify challenges and knowledge gaps, to categorize detection and prediction models
per technology used, and to describe application of various ML techniques applied in recent studies.

Pest detection approaches

Several novel and non-invasive methods have been developed in the last decade which can be
classified according to data used, such as:

e Image-based methods (Fuentes et al., 2017)

e Sensor-based methods (Navrozidis et al., 2023, Junges et al., 2020)
e Internet of things (loT) (Passias et al., 2023)

e Hybrid data approaches (Dong et al., 2020)

The following table summarizes various pest detection methods, their descriptions, and references to
relevant studies (Table 1). It also includes traditional and manual techniques.

10
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Table 1 Overview of pest detection methods, their descriptions, and key references

?:’::;:Z: Description References
Zhu et al., 2020
Visual Traditional method involving manual examination of crops by farmers or Hussain and
inspection professionals. Srikaanth (2024)

Molecular tests

Proximal
sensing and
Image
recognition

Remote
sensing

loT

Hybrid
approach

DNA-based methods like PCR for identifying pest species from soil or
plant samples.

Employs deep learning algorithms (i.e., CNN, YOLO) and computer vision
for identifying pests in images.

Utilizes UAVSs, satellites, and hyperspectral imaging to detect pest
infestations over large areas.

Integrates sensors and loT devices for real-time monitoring and data
collection on pest presence.

Integrates multiple data sources and leveraging various machine learning
techniques

Herbert et al.,
2008

Chen et al., 2021

Zheng et al., 2023
Chen et al., 2020
Passias et al.,

2023

Yang et al.,, 2021

11
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Image-Based Pest Recognition and Detection

Table 2 Summary of recently developed image-based pest recognition and detection methods

Method

Crop

Pest/Disease

Reference

Faster Region-based
Convolutional Neural
Network (Faster R-CNN),
Region-based Fully
Convolutional Network (R-
FCN), and Single Shot
Multibox Detector (SSD)

Faster R-CNN network

CNN using the GooglLeNet
architecture

Yolo V3
aster R-CNN

YOLO v4

Optimized Yolov3
ResNet50

Multi-scale Dense YOLO
(MD-YOLO)

Faster-PestNet CNN

YOLOVS - involving the
SWin Transformer, ResSPP,

Tomato

Tulip

14 plant species

Tomato

Dataset collected in field
environment

Multiple crops

Multiple crops

Apple orchards

Multiple crops

Various plants and pests

9 tomato diseases

Tulip Breaking Virus (TBV)

79 diseases (leaf damages)

Multiple tomato diseases

Grasshopper identification

Mealybugs, Coccidae, and
Diaspididae

102 insect pests (1P102
dataset)

Three lepidopteran pests

IP102 dataset

Dataset with 1309 images

Fuentes et al., 2017

Polder et al., 2018

Barbedo, 2019

Liu and Wang, 2020
Yietal., 2021

Chen et al., 2021

Prasath and Akila, 2023

Tian et al., 2023

Aliet al., 2023

Dai et al., 2023

and C3TR

Bayesian multi-task

learning (using a ResNet18 Corn, rape, rice, wheat Aphids Amrani et al., 2024
backbone)
YOLO v8 Tomato Tuta absoluta Christakakis et al., 2024

Image-based pest recognition and detection involves using computer vision and ML techniques to
identify and classify pests from images. Some of the recent studies that utilized images for
identification of pests and diseases are presented in Table 2. Images used for ML techniques are
collected by digital cameras or scanners. High-resolution cameras, including both RGB (Red, Green,
Blue) and multispectral cameras, are commonly employed to capture detailed images of crops. These
cameras can be mounted on various platforms such as drones, satellites, and ground-based vehicles,
allowing for flexible and comprehensive monitoring of agricultural fields (Domingues et al., 2022). For
more detailed and close-range imaging, ground-based systems are employed. These systems can
employ handheld cameras and smartphones (Fuentes et al., 2017, Christakakis et al., 2024), mounted
cameras on agricultural machinery or specialized robotic platforms (Cubero et al. 2020), stationary
camera systems installed in fields for continuous monitoring (Preti et al. 2020, Tian et al., 2023). In
addition, unmanned aerial vehicles (UAV) are used to offer the advantage of capturing images from
different angles and heights, providing a more complete view of the crop conditions (Du et al., 2022).
Moreover, advanced sensors such as hyperspectral sensors and thermal cameras are used to gather

12
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more specific data that can reveal information not visible to the naked eye, such as plant stress or early
signs of pest infestation (Zhao et al., 2022, Singh et al., 2022, Bhakta et al., 2022).

Smartphones and cloud platforms have emerged as powerful tools for enabling farmers to detect pests
in their crops more efficiently and effectively. This technology-driven approach combines the
accessibility of mobile devices with the processing power and storage capabilities of cloud computing
to create pest detection systems (Chen et al., 2021, Christakakis et al., 2024).

Machine learning methods

The field of image-based pest detection relies on various machine learning and computer vision
techniques to process and analyse the collected images. Image-based methods utilize computer vision
techniques, primarily using Convolutional Neural Networks (CNNs) (Popescu et al., 2023) and object
detection models for pest and disease detection (Yi et al., 2021). These methods involve capturing
images at various scales (leaf, canopy, field) and analysing them for signs of pests or damage.

CNNs are mainly and successfully used for the development of classification, object detection, or
segmentation tasks in image analysis in pest detection as they are particularly well-suited to image
recognition tasks (Chen et al., 2021, Popescu et al., 2023). The capability of neural networks to learn
and recognize patterns in data have been utilized to detect insects and pests in crops. The CNN model
typically consists of two main operators, which are the convolutional layer and the pooling layer. The
convolutional layer can automatically extract more complex and significant features of the image. Due
to the high computation of the convolutional network, the pooling layer reduces the number of
parameters of the data. A large number the current research investigates the topic of pest image
classification based on CNN models (Popescu et al., 2023, Mittal et al., 2024).

Advanced object detection architectures like Faster Region-Based CNN (Faster R-CNN) (Du et al., 2022),
Single Shot Multibox Detecto (SSD) (Fuentes et al., 2017), and You Only Look Once (YOLO) (Dai et al.,
2023) have significantly improved pest and disease identification and detection in crops.

Faster R-CNN is an object detection model with a two-stage learning method. In the first stage, it
involves finding the region proposal and then it performs classification and bounding-box regression
based on the region proposal in the second stage. Chen et al. (2021) used Faster R-CNN to detect pests
by smartphone-based application and image recognition. Faster R-CNN F1 score accuracy in detecting
mealybugs was 85%, 91% for Coccidae, and 83% for Diaspididae. The inference time of the model was
0.69 s per image. This study demonstrates the potential of combining deep learning object detection
methods with mobile technology, aligning with a growing trend of developing smartphone applications
that utilize deep learning models for on-site pest detection (eLocust3m?, Plantix3, Khan and Parihar,
2022).

Based on Faster R-CNN, Du et al. (2022) proposed Pest R-CNN for early detection and monitoring the
occurrence of maize Spodoptera frugiperda, by using ortho-images acquired by an UAV flighting at a
height of 1.5 m. It showed a better accuracy in comparison to R-CNN and YOLOv5 model showing its
potential in utilizing low-cost remote sensing methods and applying them in actual agricultural pest
detection. Authors proposed increasing the transferability by training the model on more images of
leaves infested by different type of pests and in different geography zones. In addition, multi-source
data approach (multi-spectral and hyper-spectral images) was proposed to further explore the
combination of different remote sensing data by using this model.

2 https://play.google.com/store/apps/details?id=plantvillage.locustsurvey
3 https://plantix.net/en/
13
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Another improvement of Faster R-CNN was proposed by Ali et al. (2023) by developing Faster-PestNet.
It uses MobileNet as its base network and is tuned on the pest samples to recognize the crop pests of
various categories. IP102 dataset (Wu et al., 2019) was utilized for model tuning and testing, which
contains more than 75,000 in-field collected photos from 102 categories. Accuracy of 82.43% was
achieved on the test set that contained several image distortions and images with complex
background. In addition to pest recognition, it was proposed to evaluate the same technique for
recognizing the crop diseases caused by pests.

With the development of object detection, YOLO series (Redmon et al., 2016) has been the industry-
level standard for efficient object detection. It has also been widely used in the modern agricultural
sector for real-time pest detection and monitoring (Popescu et al., 2023). YOLO uses a grid of cells to
divide the image into multiple bounding boxes and predicts the object class and location for each cell.
Dai et al. (2023) introduced improved YOLOv5Sm for pest detection improving robustness for
recognizing plant pests and achieving better accuracy in comparison to previous versions. The latest
YOLO versions that were employed for pest detection kept improving performances (enhancing
precision and increasing detection speed) are YOLOv8 (Ye et al., 2024) and YOLOV9 (He et al., 2024).

The main advantages of YOLO in pest detection are its significant enhancement of detection accuracy
and speed. For instance, the PestLite-YOLO model based on YOLOV5 improved the mean Average
Precision (mAP) and provided real-time monitoring capabilities (Gao, 2024). Similarly, the SP-YOLO
model based on YOLOv8n achieved higher precision and recall rates for soybean pest detection
compared to traditional methods (Qin et al., 2024). Traditional machine learning methods require
extensive preprocessing and feature extraction, which are time-consuming and less accurate
compared to the end-to-end structure of YOLO models (Li et al., 2024b).

Datasets

The quality and diversity of training data significantly impacts the performance and generalizability of
pest detection systems. There are several publicly available datasets and ongoing projects that provide
data for pest detection and recognition in agriculture. For instance, datasets such as IP102 and
PlantVillage have been extensively used to train models for detecting various pests across different
crop types. IP102 is a large-scale pest dataset (Wu et al., 2019) containing 75,000 images from 102 pest
categories. PlantVillage is another open access dataset (Hughes and Salathé, 2015) that includes
images of healthy and diseased plant leaves, which can be useful for identifying pest damage
symptoms. PlantDoc dataset includes 2,598 images taken in real-world settings across 13 plant species
and 27 classes of diseases, contributing to improved accuracy of detection models (Singh et al., 2020).

For specific crop types or regions, custom datasets can often be built using a combination of field
surveys, ground sensors, and collected images. Custom datasets allow for more precise and context-
specific pest detection, as they can include images captured under local environmental conditions and
feature pests that are prevalent in specific areas.

In the review of pest detection and recognition algorithms in agriculture by (Guo et al., 2024), authors
confirmed the success of object-based deep learning algorithms for pest detection. It was stated that
future work should focus on developing multimodal pest datasets, applying transfer learning, and
designing hybrid architectures to address challenges such as background noise in complex agricultural
environments and the diversity in pest appearance.

Limitation
While image-based pest detection algorithms demonstrated significant promise in pest detection, they
face several challenges:

14



D2.2: Report on SOTA in pest detection and prediction

Imbalanced Class Distribution: Many detection systems struggle with extremely imbalanced class
distributions, where some pest species are underrepresented in training datasets, leading to poor
detection accuracy for those species (Lv et al., 2022). In addition, high visual similarity between
different pest species can lead to misclassification, reducing the overall accuracy of detection systems
(Liu et al., 2022, Ali et al., 2023).

Dataset size: Several authors highlighted the limitation related to small number of samples in public
datasets for training the models for agricultural pest recognition (Barbedo, 2018, Barbedo, 2019, Zhao
etal., 2022, Liu et al., 2022). Augmentation techniques were commonly used to artificially increase the
number of samples for training (Barbedo, 2019, Patel and Bhat, 2021, Ye et al., 2022). Some widely
used techniques in deep learning are: rotating images, flipping images, adding noise, cropping or
zooming into specific parts of images. For instance, Barbedo (2019) proposed a method for increasing
size and diversity of plant disease image datasets, where images of leaves were segmented into
individual lesions and spots, which increased the sample size.

Complex Backgrounds: Field environments often have complex backgrounds, which can confuse
detection models and lead to false positives or missed detections (Guo et al., 2024).

Small Pest Size: Detecting small pests is particularly challenging due to their tiny size and the need for
high-resolution images to capture sufficient detail. (Liu and Wang, 2021, Khalid et al., 2023)

Real-Time Application: Many current systems are constrained to laboratory settings or controlled
environments and struggle with real-time, in-field applications due to computational and logistical
limitation (Liu and Chahl, 2018).

Trends and outlook

Recent trends in image-based pest detection systems emphasize advancements in machine learning,
sensor technologies, and data fusion to improve pest identification and monitoring. Various models
demonstrate high accuracy and speed, making them suitable for real-time field applications.
Additionally, the integration of mobile and cloud-based platforms has made pest detection systems
more accessible to farmers, allowing on-site identification through smartphone applications. Emerging
methodologies incorporate multi-modal data fusion, combining image data with environmental factors
like soil moisture and climate conditions, to provide a comprehensive understanding of pest dynamics.

While these technologies offer significant promise, challenges such as imbalanced datasets, complex
field backgrounds, and the detection of small pests remain active areas of research, with future efforts
focusing on hybrid models, improved datasets, and transfer learning to address these limitations.

The future of pest detection in agriculture relies on the development of high-quality image datasets
and reliable detection models (Zhang et al., 2023). For example, hybrid models combining multiple
algorithms can improve classification accuracy and efficiency (Divya and Santhi, 2023). Additionally,
multi-modal data fusion, which integrates image data with other sensor inputs like infrared or audio,
has the potential to further enhance detection capabilities (Lima et al., 2020, Dai et al., 2023). For
example, Tian et al. (2023) plans to leverage the information on pest occurrence, as well as climate
and soil moisture data, to establish a correlation between these factors and the presence of insect
pests.

Developing automated systems for pest detection can reduce labour costs and increase accuracy.
These systems can leverage machine vision and image processing techniques to selectively target pests
and help in minimizing pesticide use (Kumar et al., 2017, Preti et al. 2020,).
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Remote sensing methods in Pest and Disease Recognition and Detection

Remote sensing technology in pest management refers to the use of data collected at a distance from
the plants, using satellites or drones, to detect changes in crop health that may indicate pest
infestations. Remote sensing is able to detect plant damages and disease symptoms such as
morphological changes outside the plant and physiological changes inside the plant (Zheng et al.,
2023), providing noncontact and spatially continuous monitoring of diseases and pests efficiently.
These symptoms are often reflected in the plant’s spectral reflectance (Hall et al., 2016). Remote
sensing tools can be used in diseases detection and monitoring in case a disease induce spectral
response that can be detected by a specific sensor or sensors system (Zhang et al., 2019). This
technology leverages the measurement of electromagnetic radiation reflected from crops to identify
stress indicators caused by pests.

Therefore, based on the monitoring scale, remote sensing can be applied at leaf, canopy, field, and
regional scale. Remote sensing systems are classified into groups that include: visible & near-infrared
spectral sensors (VIS-NIR); fluorescence and thermal sensors; synthetic aperture radar (SAR) and light
detection and ranging (Lidar) systems (Zhang et al., 2019). According to Zhang et al. (2019), types of
plants’ changes and symptoms caused by diseases or pests can be classified in the following categories:
reduction of biomass, presence of lesions or pustules, destruction of pigment systems, wilting.

Table 3 Overview of recently developed remote sensing based methods and technologies used for pest and disease detection
in crops across different platforms and sensors

Method Platform/Sensor Crop Pest/Disease Reference
Correlation analysis UAV (hyperspectral Olives Verticillium wilt Calderén et al., 2013
and thermal)
Multilayer Duarte-Carvajalino et
perceptron, CNN, RF, UAV (multispectral) Potato Phytophthora infestans )
al., 2018
SVR
SVM and RF ZY-3 satellite Wheat Wheat rust Chen et al., 2018
Optimal threshold Sentinel-2 Wheat Wheat Yellow Rust Zheng et al., 2018
method
- ine Leafroll-A i
Various ML models Ground-based Vineyards Grapevme eafroll-Associated Bendel et al., 2020
hyperspectral sensor Virus 1 and 3
RF PlanetScope satellite Soybean Sudden death syndrome Raza et al., 2020
| -
mage-based pest UAV and loT Rice Multiple pests Bhoi et al., 2021
recognition
Back-propagation NN Multisource UAV Arecanut Yellow leaf disease Leietal., 2021
and SVM
UNet++ Sentinel-2 Forest Ba_rk beetle and aspen leaf Zhang et al., 2022
miner
Verticillium dahlia and other
RF and XGBoost UAV Olives olive diseases Navrozidis et al., 2023
Sugar Belle . .
-L L
Karhun_en oeve UAV mandarin and C.|trus canker and Laurel wilt Hariharan et al., 2023
Expansion (KLE) disease
avocado
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PLSR and linear Hyperspectral _ | | S
regression satellite imagery Maize Helicoverpa armigera oo
8 (PRISMA)

Recent advancements in pest detection leverage ML and remote sensing technologies to enhance
efficiency and accuracy (Table 3). UAVs, satellites, and ground-based systems are commonly used for
data collection. UAVs are particularly effective due to their high spatial resolution and flexibility (Jia et
al., 2016, Ye et al., 2022, Ma et al., 2022, Yuan et al., 2023, Kouadio et al., 2023, Yu and Li,
2024). Techniques such as hyperspectral imaging and thermal imaging help in identifying specific pest-
related stress by analysing the spectral signatures and thermal patterns of crops. For instance, thermal
imaging can differentiate between healthy and infested plants based on temperature variations
(Calderdn et al., 2013). Spectral and hyperspectral imaging techniques can be used for detecting
physiological changes in plants caused by pests, by identifying specific wavelengths and spectral indices
that correlate with pest presence (Jones et al., 2010, Prabhakar et al., 2022, Deng et al., 2023).

High-resolution satellite imagery enables a monitoring of large agricultural regions. While these images
may lack the precision for detailed pest and disease monitoring, they facilitate the quick detection of
affected areas and the assessment of their spread (Zheng et al., 2018, Zheng et al., 2023).

Overall, integration of remote sensing and machine learning promotes resource conservation by
enabling precise application of pesticides and fertilizers, reducing waste and environmental impact
(Lobo et al., 2024, Wang et al., 2024a).

Machine learning methods

ML advancements have been utilized in pest detection models and in smart farming in general. ML
models have been used to analyse data on diseases and relationship between the data (images,
meteorological data, spectral reflectance) and disease occurrence and intensity (Zheng et al., 2021, Lei
et al., 2021).

Various ML models, including Convolutional Neural Networks (CNNs), Support Vector Machines
(SVMs), and Random Forests (RF), were employed for pest detection (Honkavaara et al., 2020, Du et
al., 2022, Navrozidis et al., 2023). In addition, some more advanced models like multi-scale attention-
UNet (MA-UNet) (Ye et al., 2022) and CNN-GAIL (Yu and Li, 2024) have shown superior performance in
specific applications.

SVM algorithm was employed to predict the occurrence and severity of the yellow leaf disease of
arecanut (Lei et al., 2021). This study used the UAV multisource remote sensing data and achieved
classification accuracy of 86.30%, which was slightly higher than other classification algorithms (naive
Bayes, k-NN, decision tree). SVM algorithm demonstrated superior performance in another study
(Calou et al., 2020) with 99.28% overall accuracy. In this study, high-resolution aerial images combined
with machine learning algorithms have been utilized to monitor yellow sigatoka in banana crops. SVM
was also applied to monitor wheat yellow rust based on Sentinel-2 multispectral images (Zheng et al.,
2021). This model used two-stage vegetation indices (using images from two different days) and
meteorological data achieving the classification accuracy of 84.2%.

RF is another traditional machine learning-based method used for pest detection as a binary
classification model. Detection of incidence of the coffee berry necrosis was tested using Landsat 8
satellite imagery with RF classifier (Miranda et al., 2020). The authors suggested that integration with
other remote sensing technologies would be beneficial for more precise detection as current overall
accuracy of the detection was less than 0.6.

ML algorithms, RF and XGBoost, were used to classify olive trees as healthy or infected based on their
spectral signatures obtained by UAV (Navrozidis et al., 2023). Use of these algorithms was evaluated
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and optimized by identification of the most important spectral features by Recursive Feature
Elimination and Mutual Information techniques. The algorithms achieved high classification
performance, with RF and XGB reaching roc-auc scores of 0.977 and 0.955, respectively. Both classifiers
were trained with the initial dataset of 1507 features (11 statistics for 137 bands).

KNN algorithm is used for classification by finding the K nearest matches in training data followed by
using the label of closest matches to predict. Traditionally, distance such as euclidean is used to find
the closest match (Kartikeyan & Shrivastava 2021). KNN classifiers was employed using UAV-based
multispectral imaging to detect Cercospora leaf spot in sugar beets, showing the highest accuracy
compared to other classifiers (Tugrul et al., 2024).

Deep learning methods have emerged as particularly powerful tools with the ability to handle large,
complex datasets. In addition, deep learning approaches have advantage of automatic feature
extraction and have superior performance on image-based tasks. Several recent studies have
successfully applied deep learning methods, particularly CNN models, in the detection of plant diseases
and insects.

Du et al. (2022) proposed an end-to-end object-based deep learning model, Pest R-CNN, for detecting
and localizing Spodoptera frugiperda infestations in maize using high-resolution UAV RGB images,
achieving improved accuracy over Faster R-CNN and YOLOVS5, and offering a promising approach for
precision pest monitoring.

Zhang et al. (2022) combined the UNet++ architecture with an attention mechanism to detect bark
beetle and aspen leaf miner infestations in British Columbia forests, achieving an accuracy of 85.11%,
outperforming previous segmentation models. This deep learning-based method utilized Sentinel-2
multispectral data, vegetation indices, and RGB imagery for forest-pest damage segmentation, while
the ResNeSt101 backbone and the scSE attention mechanismin the decoding phase improve
segmentation results.

Data

Sentinel-2 offer 13 spectral bands of 10 to 60 m spatial resolution, and with two satellites cover the
entire Earth every five days (Vuolo et al., 2016), providing data that can be utilized in pest detection.
Sentinel-2 bands was also utilized by Zheng et al. (2018) by creating a new index, the Red Edge Disease
Stress Index (REDSI), for detecting yellow rust disease of winter wheat. The optimal threshold method
was used to assess REDSI’s ability for mapping yellow rust infection resulting in the overall accuracy of
84.1% and 85.2% at the canopy and regional scale, respectively. The study concludes that Sentinel-2
MSI and the REDSI index can support effective disease detection.

Hyperspectral sensors, consisting of numerous narrow spectral bands, have the potential to detect
diseases by capturing subtle changes in the spectral profile of plants that may be caused by pests and
diseases. Potential of hyperspectral satellite imagery (PRISMA) was assessed in Sari-Barnacz et al.
(2024) for monitoring maize ear damage caused by cotton bollworm larvae in Hungary, and compared
to Sentinel-2, PRISMA performed better in grain maize and Sentinel-2 in sweet maize pest monitoring.

Ground-based hyperspectral imaging (400-2500 nm) was also tested to detect grapevine leafroll
disease (GLD) caused by GLRaV-1 and GLRaV-3 in white and red grapevine cultivars (Bendel et al.,
2020). Detection models successfully identified symptomatic, asymptomatic, and healthy plants in
both greenhouse and field conditions.

High spatial resolution satellite data provide potential of more precise identification of individual
infested plants and mapping of affected areas. For instance, high spatial resolution ZY-3 satellite
imagery was utilized to map wheat rust disease (Chen et al., 2018). By applying wrapper feature
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selection combined with SVM and RF classification methods, this study achieved high classification
accuracy (90.80% to 95.10%).

Raza et al. (2020) investigated the use of another high-resolution (3m) PlanetScope satellite imagery
combined with the random RF algorithm to detect sudden death syndrome (SDS) in soybean fields in
lowa, USA. The results showed that this approach can detect SDS-infected areas with over 75%
accuracy, even before visible symptoms appear.

Lidar is an active sensor that can be integrated with other remote sensing data and used in prediction
of disease and parasite outbreaks (Farhan et al., 2024). Franceschini et al. (2024) explored the use of
LiDAR-derived point clouds and hyperspectral imagery to detect Blackleg disease in potatoes.
Structural features from LiDAR were combined with vegetation indices derived from hyperspectral
data, which increased the classification accuracy up to 18% compared to using vegetation indices as a
single data source.

In addition, the potential of thermal imaging in the early detection of plant diseases and pests were
confirmed by some studies (Singh et al., 2022, Hernanda et al., 2024). For example, severity of stripe
rust disease in wheat was estimated using thermal images by Singh et al. (2022), showing similar or
better estimates in comparison to visible images. Thermal imaging was used in combination with
airborne hyperspectral images to distinguish between Verticillium dahliae and Xylella fastidiosa
infections in olive trees (Poblete et al., 2021). Key spectral traits, such as the blue index, structural
parameter, and carotenoid pigment content, were effective in differentiating Verticillium dahliae
infections, while traits like the normalized PRI index, blue index, fluorescence curvature reflectance-
based index, and chlorophyll index were crucial for identifying Xylella fastidiosa infections.

Multi-source reflectance data can improve the pest detection performance of models by providing
diverse and complementary information (Li et al., 202443, Yang et al., 2021). Multi-source data imagery
(thermal, multispectral, and hyperspectral) was used to detect early-stage water stress caused by
Verticillium wilt in olive trees (Calderdn et al., 2013). Thermal indices like canopy temperature minus
air temperature, Crop Water Stress Index, and physiological indices like chlorophyll fluorescence,
blue/green/red ratios, and the Photochemical Reflectance Index were effective in identifying
Verticillium wilt infection and assessing disease severity in olive orchards. Another study (Lei et al.,
2021) used multispectral data and UAV high-resolution imagery to calculate five vegetation indices,
including NDVI and OSAVI, and applied machine learning algorithms like back-propagation neural
networks (BPNN) and SVM to quantify disease severity based on the yellowing area of areca crowns.
Authors proposed integration of hyperspectral sensors with 3D laser radar and employing deep
learning algorithms.

Spectroscopy

Spectroscopy is being used in agriculture for pest detection due to its ability to help identify plant stress
caused by pests by analysing specific spectral signatures before visible symptoms appear (Mishra et
al., 2024). Spectroscopy provides rapid, non-destructive methods to monitor and manage crop health
(Crépon et al., 2023). It was used for early detection of infestation (Mishra et al., 2024), for monitoring
and identification of pests (Hoseny et al.,, 2023), quality control (Johnson 2020), non-destructive
analysis to identify wavelengths sensitive to specific diseases (Hoseny et al., 2023, Sawyer et al., 2023,
Khan et al., 2021).

Sawyer et al. (2023) used RF based on hyperspectral images to identify Grapevine leafroll-associated
viruses and grapevine red blotch viruses in a laboratory. Hyperspectral data within the visible range
(from 510nm to 710nm) collected on leaf images (non-infected, infected by red blotch, infected by
leafroll or co-infected by both) was utilized to train the RF model. When binarily classifying infected vs.
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non-infected leaves, the RF model reached an overall maximum accuracy 82.8%, outperforming visual
assessment of symptoms by experts when using RGB segmented images.

Zhang et al. (2020) also employed RF to test the detection of Fusarium head blight through the analysis
of reflectance spectral data of healthy and diseased wheat ears by using 16 spectral indices. The
severity of the disease (ratio of the diseased area) was predicted with R? value exceeding 0.90.

Another study (Hoseny et al., 2023), demonstrated the effectiveness of spectroradiometry and thermal
imaging for non-invasive detection of spiny bollworm infestations in cotton bolls, identifying the Blue
band and Normalized Pigment Chlorophyll Index (NPCI) as key indicators of pest presence. This study
highlighted the importance of reducing pesticides through early detection of diseases.

Trends

Recent trends in remote sensing for pest and disease detection in crops have shown a clear progression
towards increased spatial and spectral resolution, along with significant advancements in DL models.
Traditionally, remote sensing studies have focused on detecting spectral variations caused by pest
infestations or disease infections (Zhang et al., 2019). As those variations are often detectable only in
specific and narrow wavelengths, shift toward multispectral and hyperspectral imaging is enabling
more precise detection.

Satellites often cannot capture disease progression as precisely as hyperspectral sensors, and their
spatial resolution is not high enough to detect small patterns in crops. UAV, on the other hand, can
deliver highly detailed images, but their spatial range is limited and labour intensive, while frequent
temporal observations are not always possible. This results often with a delayed detection response.
To address the limitations of both, data fusion between satellite and UAV data have been used (Ye et
al., 2022, Li et al., 2024a), which led to the improvements of the detection methods.

Thermal imaging is also gaining attention for its ability to capture early disease indicators. Another
important trend is movement towards combination of multiple data sources. For example, the
integration of multispectral, hyperspectral, and thermal sensors showed great promise for early-stage
detection, though results often depend on the disease species (Calderdn et al., 2013).

The integration of multi-source data, including meteorological data (Zheng et al., 2021), is becoming
more common to predict favourable conditions for pest outbreaks and contribute to early detection.

While traditional machine learning methods like SVM and RF have yielded promising results, deep
learning models, such as multi-scale attention UNet and CNNs, are beginning to outperform these
approaches. Nonetheless, the manual annotation and preparation of training datasets is challenging,
and lack of sufficient survey data is significant limitation for training the DL models.

Spectroscopy has emerged as a powerful tool, helping to identify key wavelength regions and develop
predictive models for disease severity (Sawyer et al., 2023, Mishra et al., 2024). For instance, research
on leaf scale using spectroscopy measurements were performed to develop detection and prediction
models based on absorbance spectra, and some authors proposed further research to be applied on a
large scale (canopy or field scale) (Dhau et al., 2017, Khan et al., 2021, Sawyer et al., 2023). However,
not often these models have been upscaled.

Current studies largely focus on binary classification (healthy vs. infected plants), but advancements in
disease severity quantification—such as pixel-level regression—are now exploring more granular data.
Method of detection largely depend on pest species and regulations. In many cases, binary
classification is sufficient because if a disease is detected, environmental regulations prescribe plants
removal and there is no need to assess the disease severity (Picard et al., 2018).
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Limitations

Detecting specific pests or diseases often requires identifying specific wavelengths, which varies by
species and growth stage. This creates a need for more extensive research and validation, as one index
or model cannot be generalized across different pests. A potential solution involves building simpler
hyperspectral cameras that focus on the most informative wavelengths for detecting crop stress
(Navrozidis et al., 2023). Transferability of models is also a challenge, as what works for one crop type
or region may not apply universally (Bendel et al., 2020).

A key limitation is that many models and spectral signatures cannot reliably differentiate between
diseases with similar spectral characteristics. This poses challenges for practical applications where
multiple diseases share overlapping symptom profiles. Additionally, spectral characteristics can vary
across different growth stages of the same disease, further complicating detection (Zhang et al., 2020).
Models often require validation for each specific disease and growth stage to ensure accurate severity
estimation. Timely detection of diseases is very challenging, because when remote sensing-based
approaches identify a disease, it is usually too late to prevent the damages in the crops (Yang 2020).

Leveraging time series of satellite images, as in Zheng et al. (2021), gives an opportunity to capture
disease progression patterns (Yang et al., 2018, Yu et al., 2022). Already mentioned data fusion of
multiple data sources, such as UAV, satellites, ground-based sensors, and field observations, could be
utilized by advanced DL models (Zhang et al., 2022) that can learn subtle spectral and spatial patterns
of infestation. In addition, environmental conditions (soil humidity, soil nutrients, light intensity,
meteoritical data) and historical disease patterns, give more contextual information to improve the
accuracy of predictive models (Markovi¢ et al., 2021, Domingues et al., 2022).

For certain diseases, low spatial resolution remains to be the problem. Problem with mixed pixels
(impact of shade, bare soil, other vegetation) often result in misclassification (Ma et al., 2019). To
improve vegetation masking and excluding the impact of bare soil, some authors suggest obtaining
surface elevation model with UAV or lidar to delineate rows of plants, or individual canopies (Weiss
and Baret, 2017). Creation of 3D point clouds by LiDAR were utilized in agricultural and forestry
applications in various studies (Wu et al., 2016, Xu et al., 2020, Lines et al., 2022). To address the mixed
pixel issue, Fu et al. (2022) used derivative of ratio spectra (DRS) to help remove the interference of
background elements in satellite multispectral image pixels, enhancing pest-related spectral features
for Cotton aphid infestation monitoring. Another approach for unmixing in vineyards was proposed by
De Petris et al. (2024), where Sentinel-2 NDVI data were integrated with high-resolution UAV-derived
grapevine fraction cover maps. The UAV data enabled accurate separation of spectral contributions
from grapevine rows and inter-rows.

Images collected at a 90° ortho-angle often do not give an opportunity to identify diseases occurring
on lower layers of leaves or from the plant’s sides. To overcome this issue, Du et al. (2022) proposed
capturing images from multiple angles in order to capture and infestation. Nie et al. (2024) successfully
addressed this problem in detection of cotton Verticillium Wilt by UAV capturing images from multiple
angles, in addition to satellite observations.

Future

While challenges remain, ongoing advancements in satellite technology, machine learning, and
integrated pest management approaches continue to improve the ability to detect and differentiate
crop diseases using remote sensing. Researchers propose higher-resolution sensors with more spectral
bands, multi-date image capture, and improved multi-source data integration (Kouadio et al., 2023),
including meteorological information, to enhance the early detection and prediction for pest outbreaks
(Berger et al., 2022).
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Transfer learning was proposed to address the issue of lack of datasets for training the models, which
leverages pre-trained models applies them to new, but related tasks (Li et al., 2023). This is particularly
important given the scarcity of large, annotated datasets in this domain. Additionally, self-supervised
learning offers potential for future improvements, particularly for early monitoring and severity
estimation.

Moreover, testing models on unknown areas and datasets is critical to ensure their robustness and
applicability across diverse conditions (Bendel et al., 2020). Many models are trained on specific
datasets and regions, but without validation in new contexts, their performance may degrade when
applied to different crops, climates, or pest pressures.

loT applications for real-time monitoring and data collection on pest presence

The Internet of Things (loT) refers to a network of interconnected devices that can collect, share, and
store information. In agriculture, loT devices and weather stations are equipped with a variety of
sensors for monitoring environmental conditions (soil humidity, soil nutrients, light intensity,
meteoritical data), and pest activity (Sharma et al., 2020). It also offers farmers tools for early
identification and targeted control of pests, which helps to improve pesticide spraying and fertilisation.
loT has the potential to significantly optimize agricultural yields and reduce resource consumption
through the use of wireless sensors, UAVs, and cloud computing (Rehman et al., 2021). Despite initial
costs, the long-term benefits of IoT, such as better plant monitoring, automated irrigation, weed
control, and pest management, typically outweigh the expenses (Ndjuluwa et al., 2023). To explore
the impact and applications of loT in pest detection, several studies have demonstrated its
effectiveness across various agricultural settings (Table 4).

Table 4 Overview of recent loT based methods for pest and disease detection in agriculture

Method Tools Crop Pest/Disease Reference
YOLOVS Smartphones, cloud Tomato Tuta absoluta Christakakis et al., 2024
computing and DSS

L 102 insect .
Optimized Yolov3 loT sensors for . Prasath and Akila, 2023
ResNet50 capturing images Multiple crops pests (IP102

P J & dataset)
Multi-scale Dense YOLO ISr;snescc;crtraps, optical Orchards Lepidoptera Tian et al., 2023
VM (loT f ivati Multipl

> ( ortor aCt.W,atmg Camera and NodeMCU Multiple crops .u tiple Krishna et al., 2019
spraying of pesticides) diseases

Traps, cameras and

R-CNN and YOLOv5 Multiple crops Whitefly pests Cardoso et al., 2022

mobile apps
N D h W
UNet af‘d eep batc et? cameras and base 14 species 38 diseases Mishra et al., 2024
normalized AlexNet station
. 32t f .
DMF-ResNet Acoustic sensors - . ypes o Dhanaraj et al., 2023
insects

Cardoso et al. (2022) presented an loT network combined with computer vision techniques, using low-
cost cameras and deep neural models like R-CNN and YOLO to autonomously detect and monitor
Whitefly pests in traps, providing farmers with real-time data through a mobile app for more efficient,
precise, and cost-effective pest management.

Another study that utilized captured plant leaf images by loT nodes (Mishra et al., 2020), developed
the sine cosine algorithm-based rider neural network (SCA-based RideNN) disease classification, which
optimizes neural network weights for improved accuracy. In this study, algorithm detects a disease but
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not a specific type. In the later study (Mishra et al., 2024), PlantVillage dataset was utilized to train the
models to identify first plant type, and disease type afterwards.

Krishna et al. (2019) employed SVM classification algorithm to detect various plant diseases utilizing a
leaf image database. Upon disease identification, loT system automatically triggers pesticide spraying
using NodeMCU and sends an SMS alert to the farmer through a cloud platform.

loT can also record insect noises (Dhanaraj et al., 2023) by deploying acoustic sensors connected to loT
networks, enabling autonomous pest detection by deep neural models.

Trends:

The integration of loT in agriculture has been expanding recently and increasingly used to monitor
environmental conditions and pest activity remotely, providing farmers with continuous, real-time
data. It helps to reduce human intervention through automation and enables farmers to constantly
monitor their farms.

loT systems has evolved from monitoring tools to detection systems utilizing ML and DL models. They
use web cameras to take images of plants which are then preprocessed and analysed by ML algorithms
for pest and disease identification. In addition, 10T collects various environmental data (i.e., soil
moisture, vegetation cover, precipitation, temperature) which are important for agriculture and are
used as features in pest modelling.

Advancements in cloud computing performances and its incorporation into loT solutions, allowed large
data processing and storage, which supports real-time analytics for better decision-making. In
addition, costs in 10T sector have been decreasing, making the technology more accessible. This trend
contributed to the development of the pest management systems and utilization of mobile
applications, enabling real-time pest and disease detection and data-driven decision-making.

Limitations:

While loT brings several advantages to pest detection, certain limitation exists. Setting up loT systems
requires specialized infrastructure and expertise, making it difficult for smaller farms to adopt. Even
though long-term benefits often outweigh initial costs, high expenses can be an obstacle for small-
scale farmers. The absence of uniform standards across loT platforms and devices can lead to
compatibility issues, hindering the integration of different systems (Kiobia et al., 2023).

In addition, accuracy of the models may be lower due to low-quality images or insufficient training
datasets, especially across early pest developmental stages. This can result in false positives/negatives
classification. Some current systems are only capable of detecting whether a plant is affected by a
disease but not the specific type, limiting their practical applications.

Accuracy problems can be addressed by large and annotated datasets collected throughout different
development stages and under real conditions. Combination of computer vision with other data
sources, such as acoustic or thermal sensors, have proved to improve detection accuracy (Poblete et
al., 2021, Dhanaraj et al., 2023).

Future

Integration of loT pest monitoring systems with precision spraying or robotic pest removal mechanisms
would have a potential for real-time, automated pest control (Wang et al.,, 2024b). Also,
interconnected pest monitoring networks could help predict and manage pest outbreaks on a larger
scale by analysing global data.

With the constant improvement of Al and DL, future systems may enhance disease classification using
more sophisticated neural networks trained on large datasets. The creation of extensive image
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datasets under real-world conditions will enhance the accuracy of pest detection systems and improve
models' robustness across different environmental scenarios.

Multi Data Approaches

Using data from multiple sources for pest detection in agriculture involves integrating various types of
information offering several advantages over traditional single-source methods. Combining diverse
data types such as imagery, remote sensing, climatic conditions, and soil attributes can significantly
improve the accuracy of pest detection models (Li et al., 2023, Huang et al., 2022, Zheng et al., 2021).

Qi et al. (2024) developed a monthly habitat suitability monitoring model for fall armyworm in Africa
using multi-source earth observation data, including climate, land use, vegetation (NDVI), and soil
variables. By integrating exploratory factor analysis and the RF algorithm, the model achieved high
performance metrics (AUC > 0.9)

Gao et al. (2020a) integrated loT and UAVs for monitoring crop diseases and pests, combining weather
data from loT sensor nodes with spectral image analysis from UAVs. The framework demonstrated
how temperature and rainfall influence wheat disease occurrence, enhancing agricultural monitoring
and decision-making.

Zhang et al. (2018) presented a vegetable pest early warning system based on multi-dimensional big
data by using a multi-sensor network to collect data on pests, soil, environment, eco-climate, weather,
and the images of pests, and applying machine learning algorithms such as Back Propagation Neural
Network. This multi-sensor network system showed that actual environmental data contribute to the
accuracy of the pest prediction model.

Huang et al. (2022) proposed combining mobile internet survey data and high-resolution spatial-
temporal meteorological information to address the limitations in pest forecasting models of
Alternaria leaf spot disease in apple caused by insufficient availability of the disease in the affected
region. Temperature and humidity during key periods were identified as sensitive inputs for the model.

Bhoi et al. (2021) proposed an loT assisted UAV based pest detection model to identify the pests in the
rice during its production in the field. Al was employed to send images captured by UAV to the Imagga
cloud?®, where pest identification is carried out and the user is informed.

Approach by Zheng et al. (2021) showed potential for regional-scale disease monitoring by model
combining Sentinel-2 multispectral vegetation indices with meteorological data in wheat yellow rust
monitoring.

Transfer learning using multi-source data has shown promising results for pest detection (Li et al.,
2023, Devi et al., 2023, Guo et al., 2024). This approach is particularly useful in agriculture, where
collecting labelled data for pest detection across diverse environments can be challenging. By using
models pre-trained on large, generic datasets, transfer learning allows to fine-tune models on specific
agricultural pest data, incorporating multi-source inputs for more accurate detection (Li et al., 2023).

Pest Detection Platforms

Pest detection platforms have become increasingly sophisticated and essential in modern agriculture,
and with the technological improvements they support pest control practices (Theodorou et al., 2023).
In addition, mobile applications make pest management more accessible, particularly for small-scale
farmers who may not have access to advanced technologies. To address a limited pool computing

4 https://imagga.com/
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capabilities of smartphones, implementation of a cloud platform with a web interface and smartphone
app is often employed (Chen et al., 2021) to perform the pest detection in real time.

Several platforms and mobile applications are available for pest detection and management in
agriculture, many of which use Al, remote sensing, and data integration to help farmers monitor and
control pest outbreaks (Table 5).

Table 5 Overview of commercial platforms and digital systems for pest and disease monitoring in agriculture

Technol
System u(:: dno o8y Data inputs Plant type Reference/link
Weather
VELOS l1oT, UAV, Eg:;i;?:;]:on bean https://users.uowm.gr/louta/
uGgv ! cultivations CONFERENCES/C71.pdf
and pest
populations
Image based
. 30 crops, . .
Plantix Phone app ::;ognltlon 120 plant https://plantix.net/en/
treatment diseases
. Forecast and . .
Agrio Phone app detection https://agrio.a
Phone app

Questionnaire

CropDiagnosis . .
pLiag —user https://www.cropdiagnosis.com/portal/crops/en/home

a . for symptoms

PP inputs yme

Croptimus Scouting Image based

latf h : f .tech/#technol

platform system, recognition ttps://www.fermata.tech/#technology
cameras

iFarmer Sugarcane https://ifarmer.asia/

Systems like VELOS utilize remote sensing and sensor technologies to collect high-quality data, which
is then used to monitor crop development, detect pests, and assess pest management strategies. It
analyses data on weather patterns, soil conditions, and pest populations to help in making informed
decisions on pesticide application and other pest control measures (Theodorou et al., 2023).

Plantix® is an android-based farming assistant tool that provides crop health information, helping with
identification of plant diseases using computer vision and deep learning techniques. Its database
contains half a million pictures covering 30 crops worldwide and offers remedies for over 120 crop
diseases. Users can take a photo of an affected plant and receive an automated diagnosis of the
problem (Samai et al., 2023).

Agrio® is another mobile application that uses Al to identify plant diseases, pests, and nutrient
deficiencies and provides treatment recommendations using on image-based disease recognition. It
also gives warning notification about the potential of spread of diseases based on satellite images and
weather models (Khan and Parihar, 2022).

A smartphone application eLocust3M’ for real-time tracking and reporting of locust swarms is using
data collected by crowdsourcing activities. Tabar et al. (2021) integrated this data with additional

5 https://plantix.net/en/
6 https://agrio.app/
7 https://www.fao.org/locust-watch/activities/innovation/digital-tools/en
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remote-sensed environmental data (i.e., soil moisture, vegetation cover, precipitation) using neural
network architecture to provide accurate predictions of locust movement in East Africa.

Early Detection and Prediction

Importance of early detection of plant pathogens is crucial for minimizing the risk of disease spreading,
crop damage and economic losses by enabling timely interventions. Early detection refers to the
identification of pests or diseases at their initial stages, often before they reach damaging levels. This
approach focuses on recognizing signs of infestation or disease early enough to implement
management strategies that can effectively mitigate their impact.

Pest prediction involves forecasting future pest populations and potential outbreaks based on current
data and historical trends. It uses models that integrate various factors, such as environmental
conditions, pest life cycles, and past infestation records, to estimate the likelihood of pest issues arising
(Markovic et al., 2021, Domingues et al., 2022).

Early detection allows for timely management practices, reducing the spread and impact of diseases
and pests on crops, which is essential for maintaining crop health and productivity (Martinelli et al.,
2015, Buja et al., 2021, Zhang et al., 2024). By identifying issues early, farmers can apply targeted
treatments, reducing the unnecessary use of pesticides (Soares et al., 2022). This not only lowers costs
but also minimizes environmental pollution (Martinelli et al., 2015, Hoseny et al., 2023). In addition,
early warning systems reduce the labour and expertise required for disease monitoring, making it a
cost-effective solution for large-scale farming operations (Long, 2023).

There were several studies and products that explored possibility of early detection of diseases.
Arapostathi et al. (2024) employed UAV-based multispectral remote sensing to detect early symptoms
of peach flatheaded root borer infestation in orchards, using vegetation indices and tree crown area
data. The XGBoost model proved to be the most effective, achieving an accuracy of 0.85, with marginal
variations from the other tested ML models, utilizing UAV-derived multispectral data where NDVI was
the most critical predictor of infestation.

Ye et al. (2022) proposed a UAV-based multi-scale attention-UNet model to address the limitations of
traditional multi-phase satellite-based methods for detecting pine wilt disease. This model improved
pest detection using monophasic aerial imagery and data augmentation techniques, allowing for
earlier and more accurate prediction of pest infestations.

Markovic et al. (2021) proposed a ML model to predict daily pest occurrences, focusing on Helicoverpa
armigera, by analysing air temperature and relative humidity. Extending the prediction window to five
days improved accuracy from 76.5% to 86.3%, reducing false detections. This validated the
effectiveness of using longer periods for better pest occurrence prediction.

David et al. (2023) also highlighted the critical role of weather data in predicting crop disease and pest
outbreaks. In their study, weather conditions, such as temperature, humidity, and rainfall, proved to
be key accelerators for the spread of diseases and pests.

Artificial inoculation is method sometimes used in research to provide data for training machine
learning models for early detection (Chivasa et al., 2021, Duan et al., 2024). Soares et al., 2022
inoculated coffee seedlings with Hemileia vastatrix, causing coffee leaf rust, to train SVM and ANN
models on labelled dataset. Multispectral images were collected using UAV in different intervals after
the inoculation to analyse spectral curves of healthy and infected plants, and detection accuracy was
80% at an asymptomatic stage (15 days after inoculation).
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Trends, limitation, future

The importance of early detection lies in identifying pests and diseases before they reach destructive
levels, enabling timely interventions. Early detection has been becoming increasingly important in
reducing crop damage, economic losses and environmental harm, because simply detecting a disease
in later phase might be too late for protecting a crop. Recent trends in this area involve the integration
of various technologies and approaches to enhance the accuracy and effectiveness of detection and
prediction systems.

To timely detect or predict the development of a disease, many studies are moving towards the
integration of multiple data sources. Collecting various parameters that affect the appearance of pests
are used as an integral part of early detection models. However, models are trained only for specific
pest and input features depend on the studied pests (Markovic et al., 2021). It leads to lack of flexibility
of models and inability to employ them onto different pest species.

Exploration of various models have been common to utilize the increasing availability of data sources
(metrological data, UAV, satellite, traps, field sensors). Future ML models will likely incorporate
transfer learning and ensemble approaches, enabling them to generalize better across different crops
and pests.

loT devices and sensors are also being used to provide real-time data on environmental conditions and
pest activity, further enhancing early detection systems. Utilization and availability of mobile apps by
farmers leads to development of mobile platform and systems that help in obtaining real-time data
useful for decisions such as targeted treatments and pesticide use (Domingues et al., 2022, Arapostathi
et al., 2024).

One of the most significant trends is the use of UAVs equipped with multispectral or hyperspectral
sensors. These UAVs capture high-resolution images of crops, allowing early detection of subtle
symptoms that may not be visible to the naked eye (Ye et al., 2022).

As in the models that aim to detect the presence of pests or occurrence of diseases, early detection
models largely depend on data reliability and their complexity and dependency on specific datasets,
which limits their generalizability. Furthermore, the expertise required to manage and interpret the
data from these systems, and knowledge about the early development of specific pests, remains a
barrier to wider adoption.

As costs are decreasing and technology advances, it is expected to build up on existing DL models.
Moreover, with the increase of pest monitoring networks on larger scales, a broader understanding of
pest movement and outbreaks could be achieved.
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Discussion and Conclusion
Based on the 8 selected pests present in all 6 UCP region (6 RNQP, 2 Quarantine), STELLA aims to
develop models to detect these pests using data obtained by available technologies (loT, remote and
proximal sensing), and to contribute to early warning systems in preventing spread of diseases caused
by selected pests. Table 6 summarizes recent studies that have explored and developed methods for
detecting pests and diseases aligned with STELLA's objectives. These studies employ technologies and
analytical methods for diverse crops, offering valuable insights for advancing pest detection systems.
While some studies directly address pests and diseases relevant to the STELLA project, others focus on
similar challenges or pathogens to provide additional insights into applicable methods and
technologies.

Table 6 Overview of recent studies utilizing various technologies and methods for detecting pests and diseases in crops

relevant to the STELLA project.

D2.2: Report on SOTA in pest detection and prediction

Crop Pest/Diseases Technology Method Reference
UAV .
Verticillium wilt (hyperspectral Correlation analysis Calderén etal., 2013
and thermal)
Olives Verticillium UAV
dahliae and Xylella  (hyperspectral RF Poblete et al., 2021
fastidiosa and thermal)
Verticillium dahlia  UAV RF and XGBoost Navrozidis et al., 2023
Ralstonia RGB images CNN Vasconez et al., 2024
solanacearum
Ralstonia Spectrometry  PCAand SVM Cen etal., 2022
solanacearum
Tomato Faster R-CNN,
Region-based Fully
9 tomato disease Image-based CNN (R-FCN), and Fuentes et al., 2017
Single Shot Multibox
Detector (SSD)
Multipl Li W 202
‘u tiple tomato Image-based Yolo V3 iu and Wang, 2020
diseases
Tuta absoluta Image-based YOLO v8 Christakakis et al., 2024
PLSR, SMLR to
analyse key
wavelengths;
GLRaV-3 Spectrometry  ouadratic _ Sinhaetal., 2019
Discriminant Analysis
(QDA) and Naive
Bayes (NB)
classification
Ground-based
GLRaV-3 hyperspectral Various ML models Bendel et al., 2020
Vineyard sensor
ANOVA and linear
GLRaV-3 Spectrometry regreis.m_on for . Gao et al.,, 2020b
sensitivity analysis;
LS-SVM classifier
GLRaV-3 and
grapewr?e red Spectrometry CNN and RF Sawyer et al., 2023
blotch virus
(GRBV)
GLRaVv-3 UAV GLDCNet Liu et al., 2024
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Grapevine yellows WorI(I1V|ew-2 SVM Zibrat and Knapic, 2024
satellites
Vascular wilt - UAV RF Leon-Rueda et al., 2021
Verticillium spp
Potato Alternaria solani -
. UAV U-Net Vijver et al., 2022
early blight
Apple Apple fire blight - RF and SVM Xiao et al., 2022

Erwinia amylovora

This review on the latest developments in the application of digital tools for pest detection and
prediction showed significant progress in recent years and growing utilization of ML and DL techniques
in agriculture monitoring. By combining diverse data types, researchers can develop more
comprehensive models that account for various factors influencing pest dynamics.

A lot of studies focused on image-based methods. CNNs and object detection models like Faster R-
CNN, YOLO, and SSD have demonstrated high accuracy in identifying pests from images. In recent
years, UAV-based imagery has become valuable for disease monitoring at field and farm scales, driven
by decreasing costs of equipment, the need for effective solutions for managing plan diseases, and
advancements in processing capabilities. Satellite data is increasingly being used for large-scale and
continuous pest monitoring. However, its spatial resolution is not always sufficient for early
recognition of small-scale changes in crop health.

The development of mobile applications and cloud platforms has made pest detection systems more
accessible to farmers, enabling on-site identification and real-time monitoring through smartphones.
loT systems has also evolved, and devices and weather stations equipped with a variety of sensors for
monitoring environmental conditions offer tools for early pest detection. By integrating loT technology
with cloud computing, mobile applications are widely used to assist farmers in monitoring pests
(Ndjuluwa et al., 2023).

Authors frequently suggested multi-source data approach to address limitations of individual data
sources. Notably, there is an evident trend of combining data from various sources, such as imagery,
remote sensing, climatic conditions, and soil attributes. Factors such as advanced DL techniques, large-
scale datasets, improved computational power and affordability of sensors, contribute to the increase
of research on multi-source data integration for pest detection. By utilizing various data, a more holistic
view of pest dynamics is possible, as well as capturing diverse factors influencing pest outbreaks (i.e.,
microclimatic variations, soil conditions, vegetation structure). Different data sources can complement
each other in terms of temporal and spatial resolution. For instance, satellites provide frequent but
coarse observations, while UAVs offer high-resolution imagery over smaller areas.

Practical applications are becoming widely used due to development of platforms and mobile
applications that are available for pest detection in agriculture. However, there is still a need for more
complex and extensive datasets that would enable efficient training of models capable of addressing
various challenges, such as background noise, complex environments, transferability across regions,
and visual similarities between different pest species. The availability of open-source, freely accessible
data on pest outbreaks through online repositories obtained by ongoing projects and collaborations,
would significantly contribute to the accuracy and generalizability of pest detecting systems and their
practical applications in real-world agricultural settings.
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Based on multiple studies in the field of pest monitoring, authors generally agree on the effectiveness
of ML and DL techniques in improving pest detection accuracy. There is also consensus on the benefits
of integrating remote sensing and loT technologies for real-time monitoring and data collection, and
importance of multi-source data fusion.

Need for larger and more balanced datasets, that are open-source and can be used to train models for
identifying multiple diseases, was highlighted in many studies and literature reviews. However, while
some authors use or suggest transfer learning and data augmentation techniques to address this issue
(Barbedo, 2019, Patel and Bhat, 2021, Ye et al., 2022, Li et al., 2023), others advocate more extensive
data collection (Wu et al., 2019, Zhang et al., 2023).

Future directions in the field of disease management in agriculture are expected to emphasize the
development of more advanced DL algorithms, high-quality datasets (Zhang et al., 2023), additional
expansion of hybrid models (Divya and Santhi, 2023), development of methods for real-time data
analysis and decision-making tools (Domingues et al., 2022, Arapostathi et al., 2024), efforts to reduce
labour costs and integrating Al and loT (Sharma et al., 2024).

In conclusion, the integration of digital tools, machine learning, and remote sensing technologies has
significantly advanced the field of pest detection and prediction in agriculture. Proximal and image-
based methods, remote sensing, and loT integration have proven to be effective in providing accurate
disease detection and pest identification, which is essential for effective pest management. The use of
multi-source data and emerging trends such as transfer learning and hybrid models offer promising
tools for further improving pest detection systems. However, challenges such as imbalanced datasets,
complex field backgrounds, and the need for high-resolution images remain. Future research should
focus on addressing these challenges and developing more robust models. The practical applications
of these technologies, including mobile apps and platforms for farmers, highlight their potential to
revolutionize pest management practices and improve agricultural productivity.

30



D2.2: Report on SOTA in pest detection and prediction

4. References

Adhitama Putra Hernanda, R., Lee, H., Cho, J., Kim, G., Cho, B.-K., & Kim, M. S. (2024). Current trends
in the use of thermal imagery in assessing plant stresses: A review. Computers and Electronics
in Agriculture, 224, 109227. https://doi.org/10.1016/j.compag.2024.109227

Ali, F.,, Qayyum, H., & Igbal, M. J. (2023). Faster-PestNet: A Lightweight Deep Learning Framework for
Crop Pest Detection and Classification. [IEEE  Access, 11, 104016-104027.
https://doi.org/10.1109/ACCESS.2023.3317506

Amrani, A., Diepeveen, D., Murray, D., Jones, M. G. K., & Sohel, F. (2024). Multi-task learning model for
agricultural pest detection from crop-plant imagery: A Bayesian approach. Computers and
Electronics in Agriculture, 218, 108719. https://doi.org/10.1016/j.compag.2024.108719

Arapostathi, E., Panopoulou, C., Antonopoulos, A., Katsileros, A., Karellas, K., Dimopoulos, C., &
Tsagkarakis, A. (2023). Early Detection of Potential Infestation by Capnodis tenebrionis (L.)
(Coleoptera: Buprestidae), in Stone and Pome Fruit Orchards, Using Multispectral Data from a
UAV. Agronomy, 14(1), 20. https://doi.org/10.3390/agronomy14010020

Arnal Barbedo, J. G. (2019). Plant disease identification from individual lesions and spots using deep
learning. Biosystems Engineering, 180, 96-107.
https://doi.org/10.1016/j.biosystemseng.2019.02.002

Barbedo, J. G. A. (2018). Impact of dataset size and variety on the effectiveness of deep learning and
transfer learning for plant disease classification. Computers and Electronics in Agriculture, 153,
46-53. https://doi.org/10.1016/j.compag.2018.08.013

Bendel, N., Kicherer, A., Backhaus, A., Kockerling, J., Maixner, M., Bleser, E., Kliick, H.-C., Seiffert, U.,
Voegele, R. T., & Topfer, R. (2020). Detection of Grapevine Leafroll-Associated Virus 1 and 3 in
White and Red Grapevine Cultivars Using Hyperspectral Imaging. Remote Sensing, 12(10),
1693. https://doi.org/10.3390/rs12101693

Berger, K., Machwitz, M., Kycko, M., Kefauver, S. C., Van Wittenberghe, S., Gerhards, M., Verrelst, J.,
Atzberger, C., van der Tol, C.,, Damm, A., Rascher, U., Herrmann, I., Paz, V. S., Fahrner, S.,
Pieruschka, R., Prikaziuk, E., Buchaillot, Ma. L., Halabuk, A., Celesti, M., ... Schlerf, M. (2022).
Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain:
A review. Remote Sensing of Environment, 280, 113198.
https://doi.org/10.1016/j.rse.2022.113198

Bhakta, I., Phadikar, S., Majumder, K., Mukherjee, H., & Sau, A. (2023). A novel plant disease prediction
model based on thermal images using modified deep convolutional neural network. Precision
Agriculture, 24(1), 23-39. https://doi.org/10.1007/s11119-022-09927-x

Bhoi, S. K., Jena, K. K., Panda, S. K., Long, H. V., Kumar, R., Subbulakshmi, P., & Jebreen, H. Bin. (2021).
An Internet of Things assisted Unmanned Aerial Vehicle based artificial intelligence model for
rice pest detection. Microprocessors and Microsystems, 80, 103607.
https://doi.org/10.1016/j.micpro.2020.103607

Buja, I., Sabella, E., Monteduro, A. G., Chiriaco, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021).
Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field
Diagnostics. Sensors, 21(6), 2129. https://doi.org/10.3390/s21062129

Calderdn, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne
hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using
fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment,
139, 231-245. https://doi.org/10.1016/j.rse.2013.07.031

31



D2.2: Report on SOTA in pest detection and prediction

Calou, V. B. C,, Teixeira, A. dos S., Moreira, L. C. J., Lima, C. S., de Oliveira, J. B., & de Oliveira, M. R. R.
(2020). The use of UAVs in monitoring yellow sigatoka in banana. Biosystems Engineering, 193,
115-125. https://doi.org/10.1016/j.biosystemseng.2020.02.016

Cardim Ferreira Lima, M., Damascena de Almeida Leandro, M. E., Valero, C., Pereira Coronel, L. C., &
Goncalves Bazzo, C. O. (2020). Automatic Detection and Monitoring of Insect Pests—A Review.
Agriculture, 10(5), 161. https://doi.org/10.3390/agriculture10050161

Cardoso, B., Silva, C., Costa, J., & Ribeiro, B. (2022). Internet of Things Meets Computer Vision to Make
an Intelligent Pest Monitoring Network. Applied Sciences, 12(18), 9397.
https://doi.org/10.3390/app12189397

Cen, Y., Huang, Y., Hu, S., Zhang, L., & Zhang, J. (2022). Early Detection of Bacterial Wilt in Tomato with
Portable Hyperspectral Spectrometer. Remote Sensing, 14(12), 2882.
https://doi.org/10.3390/rs14122882

Chen, C.-J., Huang, Y.-Y,, Li, Y.-S., Chang, C.-Y., & Huang, Y.-M. (2020). An AloT Based Smart Agricultural
System for Pests Detection. IEEE Access, 8, 180750-180761.
https://doi.org/10.1109/ACCESS.2020.3024891

Chen, D., Shi, Y., Huang, W., Zhang, J., & Wu, K. (2018). Mapping wheat rust based on high spatial
resolution satellite imagery. Computers and Electronics in Agriculture, 152, 109-116.
https://doi.org/10.1016/j.compag.2018.07.002

Chen, J.-W., Lin, W.-J., Cheng, H.-J., Hung, C.-L., Lin, C.-Y., & Chen, S.-P. (2021). A Smartphone-Based
Application for Scale Pest Detection Using Multiple-Object Detection Methods. Electronics,
10(4), 372. https://doi.org/10.3390/electronics10040372

Chivasa, W., Mutanga, O., & Burguefio, J. (2021). UAV-based high-throughput phenotyping to increase
prediction and selection accuracy in maize varieties under artificial MSV inoculation.
Computers and Electronics in Agriculture, 184, 106128.
https://doi.org/10.1016/j.compag.2021.106128

Christakakis, P., Papadopoulou, G., Mikos, G., Kalogiannidis, N., loannidis, D., Tzovaras, D., & Pechlivani,
E. M. (2024). Smartphone-Based Citizen Science Tool for Plant Disease and Insect Pest
Detection Using Artificial Intelligence. Technologies, 12(7), 101.
https://doi.org/10.3390/technologies12070101

Crépon, K., Cabacos, M., Bonduelle, F., Ammari, F., Faure, M., & Maudemain, S. (2023). Using Internet
of Things (loT), Near-Infrared Spectroscopy (NIRS), and Hyperspectral Imaging (HSI) to Enhance
Monitoring and Detection of Grain Pests in Storage and Handling Operators. Agriculture, 13(7),
1355. https://doi.org/10.3390/agriculture13071355

Cubero, S., Marco-Noales, E., Aleixos, N., Barbé, S., & Blasco, J. (2020). RobHortic: A Field Robot to
Detect Pests and Diseases in Horticultural Crops by Proximal Sensing. Agriculture, 10(7), 276.
https://doi.org/10.3390/agriculture10070276

Dai, M., Dorjoy, M. M. H., Miao, H., & Zhang, S. (2023). A New Pest Detection Method Based on
Improved YOLOv5m. Insects, 14(1), 54. https://doi.org/10.3390/insects14010054

David, D. (2023). Weather Based Prediction Models for Disease and Pest Using Machine Learning: A
Review. Asian Journal of Agricultural Extension, Economics & Sociology, 41(11), 334-345.
https://doi.org/10.9734/ajaees/2023/v41i112290

De Petris, S., Sarvia, F., Parizia, F., Ghilardi, F., Farbo, A., & Borgogno-Mondino, E. (2024). Assessing
mixed-pixels effects in vineyard mapping from Satellite: A proposal for an operational solution.
Computers and Electronics in Agriculture, 222, 109092.
https://doi.org/10.1016/j.compag.2024.109092

32



D2.2: Report on SOTA in pest detection and prediction

Deng, J., Zhang, X., Yang, Z., Zhou, C., Wang, R., Zhang, K., Lv, X,, Yang, L., Wang, Z., Li, P., & Ma, Z.
(2023). Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative
inverse of wheat stripe rust disease index. Computers and Electronics in Agriculture, 215,
108434. https://doi.org/10.1016/j.compag.2023.108434

Dhanaraj, R. K., Ali, Md. A., Sharma, A. K., & Nayyar, A. (2023). Deep Multibranch Fusion Residual
Network and loT-based pest detection system using sound analytics in large agricultural field.
Multimedia Tools and Applications, 83(13), 40215-40252. https://doi.org/10.1007/s11042-
023-16897-3

Dhau, ., Adam, E., Mutanga, O., & Ayisi, K. K. (2018). Detecting the severity of maize streak virus
infestations in maize crop using in situ hyperspectral data. Transactions of the Royal Society of
South Africa, 73(1), 8-15. https://doi.org/10.1080/0035919X.2017.1370034

Divya, B., & Santhi, M. (2023). Automatic Detection and Classification of Insects Using Hybrid FF-GWO-
CNN Algorithm. Intelligent Automation & Soft Computing, 36(2), 1881-1898.
https://doi.org/10.32604/iasc.2023.031573

Domingues, T., Branddo, T., & Ferreira, J. C. (2022). Machine Learning for Detection and Prediction of
Crop Diseases and Pests: A Comprehensive Survey. Agriculture, 12(9), 1350.
https://doi.org/10.3390/agriculture12091350

Dong, Y., Xu, F., Liu, L., Du, X., Ren, B., Guo, A., Geng, Y., Ruan, C., Ye, H., Huang, W., & Zhu, Y. (2020).
Automatic System for Crop Pest and Disease Dynamic Monitoring and Early Forecasting. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4410-4418.
https://doi.org/10.1109/JSTARS.2020.3013340

Dy, L., Sun, Y., Chen, S., Feng, J., Zhao, Y., Yan, Z., Zhang, X., & Bian, Y. (2022). A Novel Object Detection
Model Based on Faster R-CNN for Spodoptera frugiperda According to Feeding Trace of Corn
Leaves. Agriculture, 12(2), 248. https://doi.org/10.3390/agriculture12020248

Duan, Z,, Li, H., Li, C., Zhang, J., Zhang, D., Fan, X., & Chen, X. (2024). A CNN model for early detection
of pepper Phytophthora blight using multispectral imaging, integrating spectral and textural
information. Plant Methods, 20(1), 115. https://doi.org/10.1186/s13007-024-01239-7

Duarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., &
Soto-Sudrez, M. (2018). Evaluating Late Blight Severity in Potato Crops Using Unmanned Aerial
Vehicles and Machine Learning Algorithms. Remote Sensing, 10(10), 1513.
https://doi.org/10.3390/rs10101513

Farhan, S. M., Yin, J., Chen, Z., & Memon, M. S. (2024). A Comprehensive Review of LiDAR Applications
in Crop Management for Precision Agriculture. Sensors, 24(16), 5409.
https://doi.org/10.3390/s24165409

Franceschini, M. H. D., Brede, B., Kamp, J., Bartholomeus, H., & Kooistra, L. (2024). Detection of a
vascular wilt disease in potato (‘Blackleg’) based on UAV hyperspectral imagery: Can structural
features from LIiDAR or SfM improve plant-wise classification accuracy? Computers and
Electronics in Agriculture, 227, 109527. https://doi.org/10.1016/j.compag.2024.109527

Fu, H., Zhao, H., Song, R., Yang, Y., Li, Z., & Zhang, S. (2022). Cotton aphid infestation monitoring using
Sentinel-2 MSI imagery coupled with derivative of ratio spectroscopy and random forest
algorithm. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1029529

Fuentes, A., Yoon, S., Kim, S., & Park, D. (2017). A Robust Deep-Learning-Based Detector for Real-Time
Tomato Plant  Diseases and Pests Recognition.  Sensors, 17(9), 2022.
https://doi.org/10.3390/s17092022

33



D2.2: Report on SOTA in pest detection and prediction

Gao, D,, Sun, Q,, Hu, B., & Zhang, S. (2020a). A Framework for Agricultural Pest and Disease Monitoring
Based on Internet-of-Things and Unmanned Aerial Vehicles. Sensors, 20(5), 1487.
https://doi.org/10.3390/5s20051487

Gao, J. (2024). Application of YOLO deep algorithm in detection of crop diseases and insect pests.
Proceedings of the 5th International Conference on Computer Information and Big Data
Applications, 1104-1108. https://doi.org/10.1145/3671151.3671343

Gao, Z., Khot, L. R., Naidu, R. A,, & Zhang, Q. (2020b). Early detection of grapevine leafroll disease in a
red-berried wine grape cultivar using hyperspectral imaging. Computers and Electronics in
Agriculture, 179, 105807. https://doi.org/10.1016/j.compag.2020.105807

Garcia-Ruiz, H., Holste, N. M., & LaTourrette, K. (2021). Poleroviruses (Luteoviridae). In Encyclopedia
of Virology (pp. 594-602). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.21343-5

Guo, B., Wang, J., Guo, M., Chen, M., Chen, Y., & Miao, Y. (2024). Overview of Pest Detection and
Recognition Algorithms. Electronics, 13(15), 3008.
https://doi.org/10.3390/electronics13153008

Hall, R. J., Castilla, G., White, J. C., Cooke, B. J., & Skakun, R. S. (2016). Remote sensing of forest pest
damage: a review and lessons learned from a Canadian perspective. The Canadian
Entomologist, 148(51), S296—S356. https://doi.org/10.4039/tce.2016.11

Hariharan, J., Ampatzidis, Y., Abdulridha, J., & Batuman, O. (2023). An Al-based spectral data analysis
process for recognizing unique plant biomarkers and disease features. Computers and
Electronics in Agriculture, 204, 107574. https://doi.org/10.1016/j.compag.2022.107574

He, R., Li, P., Zhu, J., Zhang, F., Wang, Y., Zhang, T., Yang, D., & Zhou, B. (2024). YOLOv9-LSBN: An
improved YOLOv9 model for cotton pest and disease identification method.
https://doi.org/10.21203/rs.3.rs-4727616/v1

Herbert, K., Powell, K., Mckay, A., hartley, D., Ophel-Keller, K., Schiffer, M., & Hoffmann, A. (2008).
Developing and Testing a Diagnostic Probe for Grape Phylloxera Applicable to Soil Samples.
Journal of Economic Entomology, 101(6), 1934-1943. https://doi.org/10.1603/0022-0493-
101.6.1934

Honkavaara, E., Nasi, R., Oliveira, R., Viljanen, N., Suomalainen, J., Khoramshahi, E., Hakala, T.,
Nevalainen, O., Markelin, L., Vuorinen, M., Kankaanhuhta, V., Lyytikdinen-Saarenmaa, P., &
Haataja, L. (2020). Using Multitemporal - and Multispectral Uav Imaging for Detecting Bark
Beetle Infestation on Norway Spruce. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information  Sciences,  XLIlI-B3-2020, 429-434.
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-429-2020

Hoseny, M. M. El, Dahi, H. F., Shafei, A. M. El, & Yones, M. S. (2022). Spectroradiometer and thermal
imaging as tools from remote sensing used for early detection of spiny bollworm, Earias
insulana (Boisd.) infestation. International Journal of Tropical Insect Science, 43(1), 245-256.
https://doi.org/10.1007/s42690-022-00917-0

Huang, Y., Zhang, J., Zhang, J., Yuan, L., Zhou, X., Xu, X., & Yang, G. (2022). Forecasting Alternaria Leaf
Spot in Apple with Spatial-Temporal Meteorological and Mobile Internet-Based Disease Survey
Data. Agronomy, 12(3), 679. https://doi.org/10.3390/agronomy12030679

Hughes, D., & Salathé, M. (n.d.). An open access repository of images on plant health to enable the
development of mobile disease diagnostics. ArXiv Preprint ArXiv:1511.08060.

Hussain. A and Balaji Srikaanth. P. (2024). Leveraging Deep Learning and Farmland Fertility Algorithm
for Automated Rice Pest Detection and Classification Model. KS/I Transactions on Internet and
Information Systems, 18(4). https://doi.org/10.3837/tiis.2024.04.008

34



D2.2: Report on SOTA in pest detection and prediction

Ipsita Samal, Tanmaya Kumar Bhoi, Asit Kumar Pradhan, & Deepak kumar Mahanta. (2023). Plantix
app: A Success story of artificial intelligence in plant protection. Van Sangyan, 24.

Jia, Y., Su, Z.,, Shen, W., Yuan, J., & Xu, Z. (2016). UAV Remote Sensing Image Mosaic and Its Application
in  Agriculture.  International  Journal of Smart Home, 10(5), 159-170.
https://doi.org/10.14257/ijsh.2016.10.5.15

Johnson, J. B. (2020). An overview of near-infrared spectroscopy (NIRS) for the detection of insect pests
in  stored grains. Journal of Stored Products Research, 86, 101558.
https://doi.org/10.1016/j.jspr.2019.101558

Jones, C. D., Jones, J. B., & Lee, W. S. (2010). Diagnosis of bacterial spot of tomato using spectral
signatures. Computers and  Electronics in  Agriculture, 74(2), 329-335.
https://doi.org/10.1016/j.compag.2010.09.008

Junges, A. H., Almanca, M. A. K., Fajardo, T. V. M., & Ducati, J. R. (2020). Leaf hyperspectral reflectance
as a potential tool to detect diseases associated with vineyard decline. Tropical Plant
Pathology, 45(5), 522-533. https://doi.org/10.1007/s40858-020-00387-0

Kartikeyan, P., & Shrivastava, G. (2021). Review on Emerging Trends in Detection of Plant Diseases
using Image Processing with Machine Learning. International Journal of Computer
Applications, 174(11), 39-48. https://doi.org/10.5120/ijca2021920990

Khalid, S., Oqaibi, H. M., Agib, M., & Hafeez, Y. (2023). Small Pests Detection in Field Crops Using Deep
Learning Object Detection. Sustainability, 15(8), 6815. https://doi.org/10.3390/su15086815

Khan, I. H,, Liu, H., Li, W., Cao, A., Wang, X, Liu, H., Cheng, T., Tian, Y., Zhu, Y., Cao, W., & Yao, X. (2021).
Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using
Hyperspectral Images in Wheat. Remote Sensing, 13(18), 3612.
https://doi.org/10.3390/rs13183612

Kiobia, D. O., Mwitta, C. J., Fue, K. G., Schmidt, J. M., Riley, D. G., & Rains, G. C. (2023). A Review of
Successes and Impeding Challenges of loT-Based Insect Pest Detection Systems for Estimating
Agroecosystem Health and Productivity of Cotton. Sensors, 23(8), 4127.
https://doi.org/10.3390/s23084127

Kouadio, L., El Jarroudi, M., Belabess, Z., Laasli, S.-E., Roni, M. Z. K., Amine, I. D. |., Mokhtari, N., Mokrini,
F., Junk, J., & Lahlali, R. (2023). A Review on UAV-Based Applications for Plant Disease
Detection and Monitoring. Remote Sensing, 15(17), 4273.
https://doi.org/10.3390/rs15174273

Kumar, Y., Dubey, A. K., & Jothi, A. (2017). Pest detection using adaptive thresholding. 2017
International Conference on Computing, Communication and Automation (ICCCA), 42-46.
https://doi.org/10.1109/CCAA.2017.8229828

Lei, S., Luo, J., Tao, X., & Qiu, Z. (2021). Remote Sensing Detecting of Yellow Leaf Disease of Arecanut
Based on UAV  Multisource  Sensors. Remote  Sensing, 13(22), 4562.
https://doi.org/10.3390/rs13224562

Leén-Rueda, W. A, Ledn, C., Caro, S. G.-, & Ramirez-Gil, J. G. (2022). Identification of diseases and
physiological disorders in potato via multispectral drone imagery using machine learning tools.
Tropical Plant Pathology, 47(1), 152-167. https://doi.org/10.1007/s40858-021-00460-2

Li, H., Tan, B., Sun, L., Liu, H., Zhang, H., & Liu, B. (2024a). Multi-Source Image Fusion Based Regional
Classification Method for Apple Diseases and Pests. Applied Sciences, 14(17), 7695.
https://doi.org/10.3390/app14177695

Li, J., Zhao, X., Xu, H., Zhang, L., Xie, B., Yan, J., Zhang, L., Fan, D., & Li, L. (2023). An Interpretable High-
Accuracy Method for Rice Disease Detection Based on Multisource Data and Transfer Learning.
Plants, 12(18), 3273. https://doi.org/10.3390/plants12183273

35



D2.2: Report on SOTA in pest detection and prediction

Li, K., He, S., & Wang, J. (2024b). A Pest Detection Algorithm Based on Improved YOLO (pp. 312-325).
https://doi.org/10.1007/978-981-97-4393-3_26

Lines, E. R., Fischer, F. J., Owen, H. J. F., & Jucker, T. (2022). The shape of trees: Reimagining forest
ecology in three dimensions with remote sensing. Journal of Ecology, 110(8), 1730-1745.
https://doi.org/10.1111/1365-2745.13944

Liu, B., Liu, L., Zhuo, R., Chen, W., Duan, R.,, & Wang, G. (2022). A Dataset for Forestry Pest
Identification. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.857104

Liu, B., Zhang, Y., He, D., & Li, Y. (2017). Identification of Apple Leaf Diseases Based on Deep
Convolutional Neural Networks. Symmetry, 10(1), 11. https://doi.org/10.3390/sym10010011

Liu, H., & Chahl, J. S. (2018). A multispectral machine vision system for invertebrate detection on green
leaves. Computers and Electronics in Agriculture, 150, 279-288.
https://doi.org/10.1016/j.compag.2018.05.002

Liu, J., & Wang, X. (2020). Tomato Diseases and Pests Detection Based on Improved Yolo V3
Convolutional Neural Network. Frontiers in Plant Science, 11.
https://doi.org/10.3389/fpls.2020.00898

Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a review. Plant
Methods, 17(1), 22. https://doi.org/10.1186/s13007-021-00722-9

Liu, Y., Su, J., Zheng, Z., Liu, D., Song, Y., Fang, Y., Yang, P., & Su, B. (2024). GLDCNet: A novel
convolutional neural network for grapevine leafroll disease recognition using UAV-based
imagery. Computers and Electronics in Agriculture, 218, 108668.
https://doi.org/10.1016/j.compag.2024.108668

Lobo, A. D., Shetty, S., Rai, V., Naik, S. C., Badiger, M., & Singh, C. (2024). Revolutionizing Agriculture
(pp. 398-418). https://doi.org/10.4018/979-8-3693-2093-8.ch021

Long, P. D. (2024). Using Information Technology to Identify Fruit Flies in Agriculture (pp. 315-326).
https://doi.org/10.1007/978-3-031-50818-9_35

Luo, Y., Huang, H., & Roques, A. (2023). Early Monitoring of Forest Wood-Boring Pests with Remote
Sensing. Annual Review of Entomology, 68(1), 277-298. https://doi.org/10.1146/annurev-
ento-120220-125410

Lv, J., Li, W., Fan, M., Zheng, T., Yang, Z., Chen, Y., He, G., Yang, X,, Liu, S., & Sun, C. (2022). Detecting
Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance
Augmentation. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.939498

Ma, H., Huang, W, Jing, Y., Yang, C., Han, L., Dong, Y., Ye, H., Shi, Y., Zheng, Q., Liu, L., & Ruan, C. (2019).
Integrating Growth and Environmental Parameters to Discriminate Powdery Mildew and Aphid
of Winter Wheat Using Bi-Temporal Landsat-8 Imagery. Remote Sensing, 11(7), 846.
https://doi.org/10.3390/rs11070846

Ma, L., Huang, X., Hai, Q., Gang, B., Tong, S., Bao, Y., Dashzebeg, G., Nanzad, T., Dorjsuren, A.,
Enkhnasan, D., & Ariunaa, M. (2022). Model-Based Identification of Larix sibirica Ledeb.
Damage Caused by Erannis jacobsoni Djak. Based on UAV Multispectral Features and Machine
Learning. Forests, 13(12), 2104. https://doi.org/10.3390/f13122104

Markovi¢, D., Vuji¢i¢, D., Tanaskovié, S., Dordevié, B., Randi¢, S., & Stamenkovié¢, Z. (2021). Prediction
of Pest Insect Appearance Using Sensors and Machine Learning. Sensors, 21(14), 4846.
https://doi.org/10.3390/s21144846

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D.,
Boschetti, M., Goulart, L. R., Davis, C. E., & Dandekar, A. M. (2015). Advanced methods of plant

36



D2.2: Report on SOTA in pest detection and prediction

disease detection. A review. Agronomy for Sustainable Development, 35(1), 1-25.
https://doi.org/10.1007/s13593-014-0246-1

Miranda, J. da R., Alves, M. de C., Pozza, E. A., & Santos Neto, H. (2020). Detection of coffee berry
necrosis by digital image processing of landsat 8 oli satellite imagery. International Journal of
Applied Earth Observation and Geoinformation, 85, 101983.
https://doi.org/10.1016/j.jag.2019.101983

Mishra, A. R., Mishra, E. P., & Sahoo, D. (2024). Applications of hyperspectral imaging and spectroscopy
in agriculture. In Vegetation Dynamics and Crop Stress (pp. 231-243). Elsevier.
https://doi.org/10.1016/B978-0-323-95616-1.00018-3

Mishra, M., Choudhury, P., & Pati, B. (2021). Modified ride-NN optimizer for the loT based plant disease
detection. Journal of Ambient Intelligence and Humanized Computing, 12(1), 691-703.
https://doi.org/10.1007/s12652-020-02051-6

Mishra, M., Choudhury, P., & Pati, B. (2024). IoT enabled plant leaf disease segmentation and multi-
classification using mayfly bald eagle optimization-enabled machine learning. Multimedia
Tools and Applications, 83(21), 59747-59781. https://doi.org/10.1007/s11042-023-17680-0

Mittal, M., Gupta, V., Aamash, M., & Upadhyay, T. (2024). Machine learning for pest detection and
infestation prediction: A comprehensive review. WIREs Data Mining and Knowledge Discovery,
14(5). https://doi.org/10.1002/widm.1551

Mr.M.Siva Krishna, Sd.Fiza sulthana, V.Sireesha, Y.Lakshmi prasanna, & V.Sucharitha. (2019). Plant
Disease Detection and Pesticide Spraying Using DIP and loT. Journal of Emerging Technologies
and Innovative Research.

Navrozidis, |., Pantazi, X. E., Lagopodi, A., Bochtis, D., & Alexandridis, T. K. (2023). Application of
Machine Learning for Disease Detection Tasks in Olive Trees Using Hyperspectral Data. Remote
Sensing, 15(24), 5683. https://doi.org/10.3390/rs15245683

Ndjuluwa, L. N. P., Adebisi, J. A., & Dayoub, M. (2023). Internet of Things for Crop Farming: A Review
of Technologies and Applications. Commoadities, 2(4), 367-381.
https://doi.org/10.3390/commodities2040021

Nie, J., Jiang, J., Li, Y., Li, J., Chao, X., & Ercisli, S. (2024). Efficient Detection of Cotton Verticillium Wilt
by Combining Satellite Time-Series Data and Multiview UAV Images. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 17, 13547-13557.
https://doi.org/10.1109/JSTARS.2024.3437362

Passias, A., Tsakalos, K.-A., Rigogiannis, N., Voglitsis, D., Papanikolaou, N., Michalopoulou, M., Broufas,
G., & Sirakoulis, G. Ch. (2023). Comparative Study of Camera- and Sensor-Based Traps for
Insect Pest Monitoring Applications. 2023 IEEE Conference on AgriFood Electronics (CAFE), 55—
59. https://doi.org/10.1109/CAFE58535.2023.10291672

Patel, D., & Bhatt, N. (2021). Improved accuracy of pest detection using augmentation approach with
Faster R-CNN. /OP Conference Series: Materials Science and Engineering, 1042(1), 012020.
https://doi.org/10.1088/1757-899X/1042/1/012020

Picard, C., Afonso, T., Benko-Beloglavec, A., Karadjova, O., Matthews-Berry, S., Paunovic, S. A., Pietsch,
M., Reed, P., van der Gaag, D. J., & Ward, M. (2018). Recommended regulated non-quarantine
pests ( <scp>RNQP</scp> s), associated thresholds and risk management measures in the
European and Mediterranean region. EPPO Bulletin, 48(3), 552-568.
https://doi.org/10.1111/epp.12500

Poblete, T., Navas-Cortes, J. A., Camino, C., Calderon, R., Hornero, A., Gonzalez-Dugo, V., Landa, B. B.,
& Zarco-Tejada, P. J. (2021). Discriminating Xylella fastidiosa from Verticillium dahliae
infections in olive trees using thermal- and hyperspectral-based plant traits. ISPRS Journal of

37



D2.2: Report on SOTA in pest detection and prediction

Photogrammetry and Remote Sensing, 179, 133-144.
https://doi.org/10.1016/j.isprsjprs.2021.07.014

Polder, G., Westeringh, N. van de, Kool, J., Khan, H. A., Kootstra, G., & Nieuwenhuizen, A. (2019).
Automatic Detection of Tulip Breaking Virus (TBV) Using a Deep Convolutional Neural Network.
IFAC-PapersOnLine, 52(30), 12-17. https://doi.org/10.1016/].ifacol.2019.12.482

Popescu, D., Dinca, A., Ichim, L., & Angelescu, N. (2023). New trends in detection of harmful insects
and pests in modern agriculture using artificial neural networks. a review. Frontiers in Plant
Science, 14. https://doi.org/10.3389/fpls.2023.1268167

Prabhakar, M., Thirupathi, M., & Mani, M. (2022). Principles and Application of Remote Sensing in Crop
Pest Management. In Trends in Horticultural Entomology (pp. 157-183). Springer Nature
Singapore. https://doi.org/10.1007/978-981-19-0343-4_5

Prasath, P. & Akila, M. (2023). loT-based pest detection and classification using deep features with
enhanced deep learning strategies. Engineering Applications of Artificial Intelligence, 121,
105985. https://doi.org/10.1016/j.engappai.2023.105985

Preti, M., Verheggen, F., & Angeli, S. (2021). Insect pest monitoring with camera-equipped traps:
strengths and limitations.  Journal of Pest  Science, 94(2), 203-217.
https://doi.org/10.1007/s10340-020-01309-4

Qi, T., Dong, VY., Li, X., Zhao, M., & Huang, W. (2024). Fall armyworm habitat analysis in Africa with
multi-source earth observation data. Computers and Electronics in Agriculture, 225, 109283.
https://doi.org/10.1016/j.compag.2024.109283

Qin, K., Zhang, J., & Hu, Y. (2024). Identification of Insect Pests on Soybean Leaves Based on SP-YOLO.
Agronomy, 14(7), 1586. https://doi.org/10.3390/agronomy14071586

Raza, M. M., Harding, C., Liebman, M., & Leandro, L. F. (2020). Exploring the Potential of High-
Resolution Satellite Imagery for the Detection of Soybean Sudden Death Syndrome. Remote
Sensing, 12(7), 1213. https://doi.org/10.3390/rs12071213

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time
Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
779-788. https://doi.org/10.1109/CVPR.2016.91

Rehman, A., Saba, T., Kashif, M., Fati, S. M., Bahaj, S. A., & Chaudhry, H. (2022). A Revisit of Internet of
Things Technologies for Monitoring and Control Strategies in Smart Agriculture. Agronomy,
12(1), 127. https://doi.org/10.3390/agronomy12010127

S. Sandhya Devi, R., R. Vijay Kumar, V., & Sivakumar, P. (2023). EfficientNetV2 Model for Plant Disease
Classification and Pest Recognition. Computer Systems Science and Engineering, 45(2), 2249—
2263. https://doi.org/10.32604/csse.2023.032231

Sari-Barnacz, F. E., Zalai, M., Milics, G., T6thné Kun, M., Mészéros, J., Arvai, M., & Kiss, J. (2024).
Monitoring Helicoverpa armigera Damage with PRISMA Hyperspectral Imagery: First
Experience in Maize and Comparison with Sentinel-2 Imagery. Remote Sensing, 16(17), 3235.
https://doi.org/10.3390/rs16173235

Sawyer, E., Laroche-Pinel, E., Flasco, M., Cooper, M. L., Corrales, B., Fuchs, M., & Brillante, L. (2023).
Phenotyping grapevine red blotch virus and grapevine leafroll-associated viruses before and
after symptom expression through machine-learning analysis of hyperspectral images.
Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1117869

Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2021). Machine Learning Applications for Precision
Agriculture: A Comprehensive Review. IEEE Access, 9, 4843-4873.
https://doi.org/10.1109/ACCESS.2020.3048415

38


https://doi.org/10.1007/978-981-19-0343-4_5

D2.2: Report on SOTA in pest detection and prediction

Sharma, K., & Shivandu, S. K. (2024). Integrating artificial intelligence and Internet of Things (loT) for
enhanced crop monitoring and management in precision agriculture. Sensors International, 5,
100292. https://doi.org/10.1016/j.sintl.2024.100292

Sheema Khan, & Poonam Parihar. (2024). Review on Use of Mobile Applications in Digital Agriculture.
Journal of Community Mobilization and Sustainable Development, 1, 253—258.

Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S., & Batra, N. (2020). PlantDoc. Proceedings of the 7th
ACM IKDD CoDS and 25th COMAD, 249-253. https://doi.org/10.1145/3371158.3371196

Singh, R., Krishnan, P., Singh, V. K., & Banerjee, K. (2022). Application of thermal and visible imaging to
estimate stripe rust disease severity in wheat using supervised image classification methods.
Ecological Informatics, 71, 101774. https://doi.org/10.1016/j.ecoinf.2022.101774

Sinha, R., Khot, L. R., Rathnayake, A. P., Gao, Z., & Naidu, R. A. (2019). Visible-near infrared
spectroradiometry-based detection of grapevine leafroll-associated virus 3 in a red-fruited
wine grape cultivar. Computers and Electronics in Agriculture, 162, 165-173.
https://doi.org/10.1016/j.compag.2019.04.008

Soares, A. da S., Vieira, B. S., Bezerra, T. A., Martins, G. D., & Siquieroli, A. C. S. (2022). Early Detection
of Coffee Leaf Rust Caused by Hemileia vastatrix Using Multispectral Images. Agronomy,
12(12), 2911. https://doi.org/10.3390/agronomy12122911

Tabar, M., Gluck, J., Goyal, A., Jiang, F., Morr, D., Kehs, A., Lee, D., Hughes, D. P., & Yadav, A. (2021). A
PLAN for Tackling the Locust Crisis in East Africa. Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 3595-3604.
https://doi.org/10.1145/3447548.3467184

Theodorou, D., Mantas, N., Karampelia, I., Dimokas, N., Kyriakidis, T., & Louta, M. (2023). Decision
Making in Precision Agriculture - The Case of VEL OS Intelligent Decision Support System. 2023
14th International Conference on Information, Intelligence, Systems & Applications (lISA), 1-7.
https://doi.org/10.1109/11SA59645.2023.10345869

Tian, Y., Wang, S., Li, E., Yang, G., Liang, Z., & Tan, M. (2023). MD-YOLO: Multi-scale Dense YOLO for
small target pest detection. Computers and Electronics in Agriculture, 213, 108233.
https://doi.org/10.1016/j.compag.2023.108233

Van De Vijver, R., Mertens, K., Heungens, K., Nuyttens, D., Wieme, J., Maes, W. H., Van Beek, J., Somers,
B., & Saeys, W. (2022). Ultra-High-Resolution UAV-Based Detection of Alternaria solani
Infections in Potato Fields. Remote Sensing, 14(24), 6232. https://doi.org/10.3390/rs14246232

Vasconez, J. P., Vasconez, I. N., Moya, V., Calderdn-Diaz, M. J., Valenzuela, M., Besoain, X., Seeger, M.,
& Auat Cheein, F. (2024). Deep learning-based classification of visual symptoms of bacterial
wilt disease caused by Ralstonia solanacearum in tomato plants. Computers and Electronics in
Agriculture, 227, 109617. https://doi.org/10.1016/j.compag.2024.109617

Vuolo, F., Zéttak, M., Pipitone, C., Zappa, L., Wenng, H., Immitzer, M., Weiss, M., Baret, F., & Atzberger,
C. (2016). Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products:
System Use and Examples. Remote Sensing, 8(11), 938. https://doi.org/10.3390/rs8110938

Wang, J.,, Wang, Y., Li, G., & Qj, Z. (2024a). Integration of Remote Sensing and Machine Learning for
Precision Agriculture: A Comprehensive Perspective on Applications. Agronomy, 14(9), 1975.
https://doi.org/10.3390/agronomy14091975

Wang, Z., Qiao, X., Wang, Y., Yu, H., & Mu, C. (2024b). loT-based system of prevention and control for
crop diseases and insect pests. Frontiers in Plant  Science, 15.
https://doi.org/10.3389/fpls.2024.1323074

Weiss, M., & Baret, F. (2017). Using 3D Point Clouds Derived from UAV RGB Imagery to Describe
Vineyard 3D Macro-Structure. Remote Sensing, 9(2), 111. https://doi.org/10.3390/rs9020111

39



D2.2: Report on SOTA in pest detection and prediction

Wu, B., Yu, B., Wu, Q., Huang, Y., Chen, Z., & Wu, J. (2016). Individual tree crown delineation using
localized contour tree method and airborne LiDAR data in coniferous forests. International
Journal of Applied Earth Observation and  Geoinformation, 52, 82-94.
https://doi.org/10.1016/j.jag.2016.06.003

Wu, X., Zhan, C,, Lai, Y.-K., Cheng, M.-M., & Yang, J. (2019). IP102: A Large-Scale Benchmark Dataset
for Insect Pest Recognition. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 8779—-8788. https://doi.org/10.1109/CVPR.2019.00899

Xiao, D., Pan, Y., Feng, J., Yin, J,, Liu, Y., & He, L. (2022). Remote sensing detection algorithm for apple
fire blight based on UAV multispectral image. Computers and Electronics in Agriculture, 199,
107137. https://doi.org/10.1016/j.compag.2022.107137

Xu, Z., Shen, X., Cao, L., Coops, N. C., Goodbody, T. R. H., Zhong, T., Zhao, W., Sun, Q., Ba, S., Zhang, Z.,
& Wu, X. (2020). Tree species classification using UAS-based digital aerial photogrammetry
point clouds and multispectral imageries in subtropical natural forests. International Journal
of Applied Earth Observation and Geoinformation, 92, 102173.
https://doi.org/10.1016/j.jag.2020.102173

Yang, C. (2020). Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection
and Management with a Practical Application Example. Engineering, 6(5), 528-532.
https://doi.org/10.1016/j.eng.2019.10.015

Yang, C., Odvody, G. N., Thomasson, J. A,, Isakeit, T., Minzenmayer, R. R., Drake, D. R., & Nichols, R. L.
(2018). Site-Specific Management of Cotton Root Rot Using Airborne and High-Resolution
Satellite Imagery and Variable-Rate Technology. Transactions of the ASABE, 61(3), 849—858.
https://doi.org/10.13031/trans.12563

Yang, R, Lu, X., Huang, J., Zhou, J., Jiao, J., Liu, Y., Liu, F., Su, B., & Gu, P. (2021). A Multi-Source Data
Fusion Decision-Making Method for Disease and Pest Detection of Grape Foliage Based on
ShuffleNet V2. Remote Sensing, 13(24), 5102. https://doi.org/10.3390/rs13245102

Ye, R, Gao, Q., Qian, Y., Sun, J., & Li, T. (2024). Improved YOLOv8 and SAHI Model for the Collaborative
Detection of Small Targets at the Micro Scale: A Case Study of Pest Detection in Tea. Agronomy,
14(5), 1034. https://doi.org/10.3390/agronomy14051034

Ye, W, Lao, J., Liu, Y., Chang, C.-C., Zhang, Z., Li, H., & Zhou, H. (2022). Pine pest detection using remote
sensing satellite images combined with a multi-scale attention-UNet model. Ecological
Informatics, 72, 101906. https://doi.org/10.1016/j.ecoinf.2022.101906

Yi, D., Su, J., & Chen, W.-H. (2021). Probabilistic faster R-CNN with stochastic region proposing: Towards
object detection and recognition in remote sensing imagery. Neurocomputing, 459, 290-301.
https://doi.org/10.1016/j.neucom.2021.06.072

Yu, R, Huo, L., Huang, H., Yuan, Y., Gao, B., Liu, Y., Yu, L,, Li, H., Yang, L., Ren, L., & Luo, Y. (2022). Early
detection of pine wilt disease tree candidates using time-series of spectral signatures. Frontiers
in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1000093

Yu, W., & Li, S. (2024). Remote sensing enabled sustainable tomato plant health and pest surveillance
using machine learning techniques. International Journal of Sensor Networks, 44(4), 237-248.
https://doi.org/10.1504/1JSNET.2024.138509

Yuan, L., Yu, Q., Zhang, Y., Wang, X., Xu, O., & Li, W. (2023). Monitoring Thosea sinensis Walker in Tea
Plantations Based on UAV Multi-Spectral Image. Phyton, 92(3), 747-761.
https://doi.org/10.32604/phyton.2023.025502

Zhang, C., Cai, J., Xiao, D., Ye, Y., & Chehelamirani, M. (2018). Research on Vegetable Pest Warning
System Based on Multidimensional Big Data. Insects, 9(2), 66.
https://doi.org/10.3390/insects9020066

40



D2.2: Report on SOTA in pest detection and prediction

Zhang, D., Wang, Q., Lin, F., Yin, X., Gu, C., & Qiao, H. (2020). Development and Evaluation of a New
Spectral Disease Index to Detect Wheat Fusarium Head Blight Using Hyperspectral Imaging.
Sensors, 20(8), 2260. https://doi.org/10.3390/s20082260

Zhang, J., Cong, S., Zhang, G., Ma, Y., Zhang, Y., & Huang, J. (2022). Detecting Pest-Infested Forest
Damage through Multispectral Satellite Imagery and Improved UNet++. Sensors, 22(19), 7440.
https://doi.org/10.3390/s22197440

Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., & Huang, W. (2019). Monitoring
plant diseases and pests through remote sensing technology: A review. Computers and
Electronics in Agriculture, 165, 104943. https://doi.org/10.1016/j.compag.2019.104943

Zhang, T., Cai, Y., Zhuang, P., & Li, J. (2024). Remotely Sensed Crop Disease Monitoring by Machine
Learning  Algorithms: A Review. Unmanned  Systems, 12(01), 161-171.
https://doi.org/10.1142/52301385024500237

Zhang, X., Bu, J., Zhou, X., & Wang, X. (2023). Automatic pest identification system in the greenhouse
based on deep learning and machine vision. Frontiers in Plant Science, 14.
https://doi.org/10.3389/fpls.2023.1255719

Zhao, S,, Liu, J., Bai, Z., Hu, C., & Jin, Y. (2022). Crop Pest Recognition in Real Agricultural Environment
Using Convolutional Neural Networks by a Parallel Attention Mechanism. Frontiers in Plant
Science, 13. https://doi.org/10.3389/fpls.2022.839572

Zhao, X., Zhang, J., Huang, Y., Tian, Y., & Yuan, L. (2022). Detection and discrimination of disease and
insect stress of tea plants using hyperspectral imaging combined with wavelet analysis.
Computers and Electronics in Agriculture, 193, 106717.
https://doi.org/10.1016/j.compag.2022.106717

Zheng, Q., Huang, W., Cui, X., Shi, Y., & Liu, L. (2018). New Spectral Index for Detecting Wheat Yellow
Rust Using Sentinel-2 Multispectral Imagery. Sensors, 18(3), 868.
https://doi.org/10.3390/5s18030868

Zheng, Q., Huang, W., Xia, Q., Dong, Y., Ye, H., Jiang, H., Chen, S., & Huang, S. (2023). Remote Sensing
Monitoring of Rice Diseases and Pests from Different Data Sources: A Review. Agronomy,
13(7), 1851. https://doi.org/10.3390/agronomy13071851

Zheng, Q., Ye, H., Huang, W., Dong, Y., Jiang, H., Wang, C., Li, D., Wang, L., & Chen, S. (2021). Integrating
Spectral Information and Meteorological Data to Monitor Wheat Yellow Rust at a Regional
Scale: A Case Study. Remote Sensing, 13(2), 278. https://doi.org/10.3390/rs13020278

Zhu, L., Ma, Q., Chen, J., & Zhao, G. (2022). Current progress on innovative pest detection techniques
for stored cereal grains and thereof powders. Food Chemistry, 396, 133706.
https://doi.org/10.1016/j.foodchem.2022.133706

Zibrat, U., & Knapi¢, M. (2024). Detection of grapevine yellows using multispectral imaging. In Remote
Sensing in Precision Agriculture (pp. 367—-386). Elsevier. https://doi.org/10.1016/B978-0-323-
91068-2.00001-1

41



